AD-A158 658

UNCLRSSIFIED

A THEORETICAL INVESTIGATION OF ACOUSTIC CAVITATIONCU)
MISSISSIPPI UNIY UNIVERSITY PHYSICAL ACOUSTICS RESEARCH
LAB K N COMMANDER ET AL. 15 JUL 85 4-85
N0o0e14-84-C-8193 F/G 20/1




- A SN P G - o Ve W e dn b O B R A L oS A s s ) P ol il B B

-

ol P, B # 4 B e

|
|
o
|
l

ol

B E

HEHEER

HHBEEEER

2zl

I
|

NATIONAL BUREAU OF STANDARDS
WGROCOPY RESOLUTION TEST CHART

14

21

I
I
I

W, AT




00
\0
=
00
\0
F
h
o
<

T FILE TOPY

Dt R L. A2 hu S

P A Bt

REPRODUCED AT

O e T p-aieanOie

- ,.«-.‘.45.' ~Te HEPERP Y
GOVERNMEN ™ EXPENSE _
@

A THEORETICAL INVESTIGATION
OF

ACOUSTIC CAVITATION*

e ————— o m e

-

wﬂﬁaz}?

(s

,»;“T'f:;zg»,,ELEu -
W, NG 15 o5 -, A

! ‘il‘}us ducument has beon f;i)prbvéaw
' vr public release cnd sale; ity ! 2

ek
: disztobution iz unlimited. o

A

THE UNIVERSITY OF MISSISSIPPT

PHYSICAL ACOUSTICS RESEARCH GROUP v
DEPARTMENT OF PHYSICS AND ASTRONOMY

85 8 12 104




Approved for Public Release: Distribution Unlimited

Technical Report for

Office of Naval Research

b Contract N0OOO14-84-~C~0193
k A THEORETICAL INVESTIGATION
OF

ACOUSTIC CAVITATION*

by

K. W. Commander and L, A. Crum
Physical Acoustics Research Laboratory
Department of Physics and Astronomy SN
The University of Mississippi 7
Oxford, MS 38677 ’
July 15, 19875

...... ) I T . . . N X
f i R FEE -
[P . "I' i Py A8
- - RN S ST
B e s P,

*Ph.D. Dissertation by first-named author.

Reproduction in whole or in part is permitted for any purpose by the U.S.
gover. -~ 'nt.

>

e v g

,_ ARG A A A N d PELIRR A 00 S1h i Sty e "G P ph A G el n Sl L « . . DR i I AP ISl R i

‘e W W ar_w e

1% % e

M AN LA

s r ¢ ¥



Unclassified

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

REPORT DOCUMENTATION PAGE

READ INSTRUCTIONS
BEFORE COMPLETING FORM

[T REPORT NUMBER _
4-85

2, TWAC{??TJORE?O CATALOG NUMBER

TITLE (and Subtitle)

A Theoretical Investigation of Acoustic
Cavitation

S. TYPE OF REPORT & PERIOD COVERED

Technical

6. PERFORMING ORG. REPORT NUMBER

8. CONTRACT OR GRANT NUMBER(a)

AUTHOR(s)

Physics Acoustics Research Laboratory ’
Department of Physics and Astronomy

K. W. Commander and L. A. Crum N00014-84-C-~0193
I's. PERFORMING ORGANIZATION NAME AND ADDRESS y N 10. :"2“"‘% m‘k‘ﬁ INTT.N:-L O.JEE&TJTT;;—

University of MS, Oxford, MS 38677

11. CONTROLLING OFFICE NAME AND ADDRESS

12. REPORT DATE

July 15, 1985

. NUMBER OF PAGES

112

T4, MONITORING AGENCY NAME & ADDRESS(!! different from Controlling Otfice)

15. SECURITY CL ASS. (of this report)

Unclassified

18a. DECL ASSIFICATION/ DOWNGRADING
SCHEDULE

16. DISTRIBUTION STATEMENT (of thies Report)

Approved for Public Release:

Distribution Unlimited

17. DISTRIBUTION STATEMENT (of the abstrect entered In Block 20, il dilferent from Report)

18. SUPPLEMENTARY NOTES

19. KEY WORDS (Cont on olde i

Nonlinear dynamics
Cavitation
Bubbles

'y and identify by block number)

20. APSTRACT (Continue on reverse side if y and id

See following page.

tify by block mumber)

FORM
JAN 73

EDITION OF 1 NOV 65 IS OBSOLETE

DD , 1473

Unclassified

S/N 0102- LF-014- 6601

St T T T T et et e e e T
Aastlnselintaing D dnt dinc ot o dicedn s dunde

SECURITY CLASSIFICATION OF THIS PAGE (When Data Bntered)

RN o

P
et 2 a S a g




Unclassified

SECURITY CLASSIFICATION OF THIS PAGE Mhen Date Entered)

Interest in cavitation dates back to the mid 1800's; however, there
was no significant theoretical work in this area until the paper by Lord
Rayleigh 4in 1917 described the collapse of a spherical cavity. Since
) this time there have been contributions to the theory by many
scientists. In the late 1940's and early 1950's, contributions by
Blake, Plesset, Neppiras, Noltingk, and Poritsky significantly advanced
the theory resulting in an equation for the bubble dynamics known as the
Rayleigh-Plesset equation. This equation was shown to work quite well

under some conditions. .,

) P
l”\*‘/ Recent experiments have ' shown that when the acoustic driving
frequency is near one of ,the bubble's harmonic resonances, the
theoretical values predicted by the Rayleigh-Plesset equation are
inconsistent with observed values. This inconsistency lead Prosperetti
to consider the internal pressure term in the Rayleigh—-Plesset equation
) in a more general manner. In the past the internal pressure of a bubble
was assumed to be accurately predicted by a polytropic approximation.
Prosperetti considered the internal pressure from the conservation
equations, resulting in a much more accurate formulation.
n T

This studypis—an analysis o§>the two methods, showing where they
agree and where they disagree. The new formulation alse provides
additional information about the internal thermodynamics of a bubble, —
which 1s explored in some detail. < Results are shown for the internal
temperature of a cavitating bubble as a function of radial coordinate
and time. Internal pressures for a variety of conditions are shown and
are in good agreement with earlier predicted values.

»

*Pinaiiy;-~thé;gifferent models of acoustic cavitation are examined
using some of the recent techniques in dynamical systems. ' “Feigenbaum
trees' were made for the two models,K of—4interest,” This method for
analyzing an equation was shown to be very sensitive to the internal

) pres{hre term, and thus 4£1s an appropriate method for comparing
different acoustic cavitation theories. jrr e Noeod oo duoaairs, H
/
Accession For
NTIS GRA&I
: DTIC TrR |
Unanaoeunced O
Jusiifiention.
By .
' | Dintrit ..vlul/ {
‘ AVl liny Ceass !
ave L suifor ;
Liot soeeial i
f

Al

S/N ¢102- LF. 014- 660)

Unclassified
SECURITY CLASSIFICAT(ON OF THIS PAGE(MNhen Data Ennud‘)




.......................

.......

TABLE OF CONTENTS

LIST OF FIGURES L] - . L] L] L] L] L] L . L] . L]
INTRODUCTION - e . » *® . Ld L] . L] L] L] L L]
Chapter

1. THEORETICAL DEVELOPMENT . . . .

A. The acoustic cavitation equations .+ o« ¢ ¢ ¢ o« o o &

B. An exact formulation for the

internal pressure . . .

C. Limitations of the exact formulation . « « o« « o o »

2. NUMERICAL SOLUTION OF THE EQUATIONS .« ¢ ¢ « ¢ o ¢ ¢ o o«

A. Dimensionless form of the equations .+ ¢« ¢ ¢« o« « o+ &

B. Finite differenqe equations
C. Error analysis « « o« o+ « o« &
D. Applicability . . . .l. . .
3. COMPUTATIONAL RESULTS .« « « « &
A. Radius verses time curves .
B. Frequency response curves .
C. Levitation numbers . « » + «
D. Thermodynamics of the bubble

4. A SYSTEMATIC APPROACH TO CHAOTIC

interior « ¢ o + o« o o

BUBBLE MOTION . + « « &

5. CONCLUSIONS AND TOPICS FOR FUTURE STUDY .+ « &+ o« o« o + &

REFERENCES e o o 8 o & @ e & & 2 s o o o

iv

.....
...........

GE
EVIOUS PA
“|sa|.ANK

...........

L S i Mg Ve PR i Al Wl gt i ok nads iy . |

Page
. vi
. 1
. 6
. 6
. 15
. 21
. 25
. 25
. 30
. 38
. 42
. 44
. 44
. 52
. 61
. 67
. 81
. 87
. 92

o




Chapter
APPENDIX L] L] L] - L] * L ] L] L L] L] L] L3 . L] L] . * L] - L
A. Computer program for the exact formulation

B. Computer program for the Rayleigh-Plesset
Polytropic equation =« ¢« « o« o o o o o o o

BIOGRAPHICAL SKETCH OF THE AUTHOR + ¢ ¢ « & ¢ o o &

Page

97

97

106

112

'.‘_:

R
WY

Te NS

S




A Al BT AU SO ATR ALl AN M ¢l ol Sud Nl Rl el vadt Wl A Sl S e SVE Sl ool sl A s SN aa- SN et e gae de aeve g VRV DR

..............

LIST OF FIGURES

Figure Page

1. Thermal conductivity of air as a
function of temperature .« o+ ¢ ¢ o+ « s o o s o s s s o o 29

2. Flowchart for acoustic cavitation program . . « ¢ « o o &« 37

3. Normalized bubble radius as a function of time
for the analytic first order solution and our
newexactformulation @ o ® ® © o 6 @ o & o & ® & e o o @ 40

4. Normalized bubble radius as a function of time
for the Rayleigh-Plesset Polytropic equation
and the exact formulation . « ¢ o ¢ ¢ ¢ o s « o o o o o @ 41

Se Normalized bubble radius as a function of time for
the RPP, RPE, and CE methods. RO-SO microns, Pa=
0'4 bar, and f‘o.afo L] L ] L] L] L] L ] * » . L ] L] L] [ ] L ] L] L] L] L] - 46

6. Normalized bubble radius as a function of time for
the RPP and CE methods. Ro=50 microns, Pa=0.4 bar,
andf=0.8fo--......oo....-........ 47

7. Normalized bubble radius as a function of time for
the RPP and CE methods. Ro=50 microns, Pa=0.6 bar,
and f-o .8fo L] L] L ] L] L] L] [ ] L ] L] L] * L] L] L] L . L] L ] * L ] * . L] 48

8. Normalized bubble radius as a function of time for
the RPP and CE methods. RO-IO microns, Pa=0.6 bar,
and f‘o.‘bfo ® L] L] L] L ] L ] L ] L ] L] L ] * L] [ ] L] L] L] L] . L] o L] L2 L] 50

9. Normalized bubble radius as a function of time for
the RPP and CE methods. RO-IO microns, Pa=0.6 bar,
and f-o .8f° L] L] L] L] [ ] L] * * L] L ] * L] . L] L] * - - . * . L] 1 ] 51

10. Maximum normalized bubble radius as a function of
normalized frequency for the CE method. Ro-lo
microns, Pa= 0.3, 0.5, and 0.7 bar « « s« ¢ ¢ ¢ o o s o o o 53

11. Maximum normalized bubble radius as a function of
normalized frequency for the CE method. RO-SO
microns, Pa= 0.2, 0.3, 0.4, and 0.5 bar .« « ¢ « & ¢ « & &« 54

vi

et e e et s
& A K L
TR ST




vii

Figure page

12. Maximum normalized bubble radius as a function of
normalized frequency for the CE method. R =100

microns, Pa=0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 2nd 0.7 bar 55

13. Maximum normalized bubble radius as a function of
normalized frequency for the CE method. R =10
microns, Pa=0.7 bar, asterisks denote poings from
reference [52] ¢ ¢« ¢ ¢ o o o o ¢ o o o 8 o 4 5 s s e & o & 57

14. Maximum normalized bubble radius as a function of
normalized frequency for the CE method. R =100
microns, Pa=0.7 bar, asterisks denote poings from
reference {17] o o o ¢ o o o ¢ o o o o o o o o s ¢ o & o o 58

15. Maximum normalized bubble radius as a function of
normalized frequency for the CE method. RO-IO
microns, Pa=0.7 bar, asterisks denote ultraharmonic
resonance peaks from reference [52] .« ¢ « o ¢ 4 ¢ o o o » 60

16. Levitation number as a function of the normalized
radius for the CE and RPP methods. Freq.=22.2kHz,
Pa=0.095 bar, asterisks denote data from ref. [16] . « + &« 64

17. Levitation number as a function of the normalized
radius for the CE and RPP methods. Freq.=22.2kHz,
Pa=0.155 bar, asterisks denote data from ref. [16] . « . . 65

18, Levitation number as a function of the normalized
radius for the CE and RPP methods. Freq.=22.2kHz,
Pa=0.190 bar, asterisks denote data from ref. [16] . . . . 66

19. Temperature profile for a 1 micron bubble driven
at 2.1 bar and 0.4 times the linear resonance
frequency. Values for the minimum and maximum
radius are ShOWN « ¢ o« ¢ ¢ o« ¢ ¢ o o o o s o o » s s o o » 69

20, Temperature profile for a 10 micron bubble driven
at 0.9 bar and 0.4 times the linear resonance
frequency. Values for the minimum and maximum
radius are ShOWN « « ¢ ¢ & o o ¢ ¢ o o o o ¢ o o s o & s o 70

21. Temperature profile for a 100 micron bubble driven
at 0.8 bar and 0.4 times the linear resonance
frequency. Values for the minimum and maximum
radius are ShOoWn « « ¢ ¢ & 4 o o o o o o 2 s s o o o o o » 71




22.

23.

24,

25.

26.

27.

28.

29.

30.

Center temperature as a function of time for a l

micron bubble driven
of 0.4 and 0.8 times

at 1.4 bar, and frequencies
the linear resonance frequency

Center temperature as a function of time for a 10

micron bubble driven
of 0.4 and 0.8 times

at 0.6 bar, and frequencies
the linear resonance frequency

Center temperature as a function of time for a 100

micron bubble driven
of 0.4 and 0.8 times

Internal pressure as
micron bubble driven
of 0.4 and 0.8 times

Internal pressure as
micron bubble driven
of 0.4 and 0.8 times

Internal pressure as
micron bubble dirven
of 0.4 and 0.8 times

at 0.45 bar, and frequencies
the linear resonance frequency

a function of time for a 1
at l.4 bar, and frequencies
the linear resonance frequency

a function of time for a 10
at 0.6 bar, and frequencies
the linear resonance frequency

a function of time for a 100
at 0.45 bar, and frequencies
the linear resonance frequency

Radius, internal pressure, and center temperature
as a function of time for a 50 micron bubble driven
at 0.6 bar and a frequency of 0.4 times the linear

resonance frequency

Feigenbaum tree for the RPP equation. R°=50
microns and f/fo=0.5 e o s e s s s s s s s & s e o o

Feigenbaum tree for the CE equations. Ro=50
microns and f/f°=0.5 L] L] L] L] . . L] L] - - L] L] . - L] [ ]

. 73
. 74
. 75
. 77
. 78
. 79
. 80
. 85
. 86




~ T R R T —
. R AN N S R O

INTRODUCTION

The focus of this dissertation is on numerical modeling of stable
acoustic cavitation. Neppiras [1] defines stable acoustic cavitation as
the oscillation of cavities or bubbles about some equilibrium size. In
general the oscillations need not be linear, but may vary with time in a
very complex manner. The adjective stable implies that the bubble
exists for many cycles without breaking up or dissolving. On the other
hand, a transient cavitation event is one which usually exists for one
cycle or less. The bubble grows to several times its equilibrium size
and then collapses violently breaking into many smaller bubbles. We
will only deal with stable cavitation here.

Before pressing onward with the latest acoustic cavitation
theories, let us briefly examine the short history of this field of
Physics. Interest in cavitation dates back to Besant [2] in 1859.
However, there was no significant theoretical work in this field until
that of Rayleigh [3] in 1917. This paper by Rayleigh described the
collapse of a spherical cavity. Of course Lord Rayleigh is most famous

for his treatise The Theory of Sound which he started writing while on

vacation in Egypt in 1872. This monumental work took five years to
reach the press and it is a credit to Rayleigh's abilities that it is
still considered today as the foundation of physical acoustics.

Between Rayleigh's paper in 1917 and the late 1940's, all

............
............
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theoretical work 1in cavitation was concerned with hydrodynamically-
generated cavitation, usually by propellers on ships. In 1949 Blake [4]
published the first systematic study on acoustic cavitation. Shortly
after this publication, the classic papers by Plesset [5), Neppiras and
Noltingk [6,7], and Poritsky [8] appeared that significantly advanced
the theory. It was about this time that many groups began working on
the problem of acoustic cavitation. Plesset added variable pressure and
surface tension terms to the theory of Rayleigh and for his contribution
the resulting equation with a damping term added by Poritsky is called
the Rayleigh-Plesset equation. This equation is derived and discussed
in chapter 1.

The basic problem of acoustic cavitation is to find the pressure
and velocity fields of the two phase medium consisting of a bubble or
cavity and a surrounding fluid which theoretically extends to infinity.
Recent advances in ultrasonic instruments used for medical purposes have
made a knowledge of the internal temperature of an oscillating bubble
important as well. High temperatures in the interior of the bubble can
produce free radicals which could be dangerous to biological systems
[9]. In practice the bubble's radius as a function of time is also of
interest as well. Although the new theoretical model is very complex
and requires a lot of computer time for its solution, all of the
quantities mentioned above can be obtained from its solution.

In this study numerical methods are used extensively to solve the

basic equations of acoustic cavitation for the case of a spherically

.......
.
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oscillating bubble in which the internal pressure is defined by a method
suggested by Prosperetti [10]. A thorough comparison with previous
results will be made to see just what parameter values necessitate the
use of this more complex model. In chapter 4 it will be shown that this
new theory leads to a different type of coupling between the liquid and
gas phases through the use of "Feigenbaum trees" [11,12].

The most elementary model of acoustic cavitation considered here is
the Rayleigh-Plesset equation, derived by Plesset [5] with the viscous
damping term added by Poritsky [8]. Extensive numerical investigations
were carried out for this equation by Noltingk and Neppiras [6,7] and
later by Flynn {13,14]. Since that time several approximate analytical
solutions to the Rayleigh—-Plesset equation have been derived, including
a solution to second order in the asymptotic expansion by Prosperetti
[15}. These solutions were thought to be adequate until recent
experimental data showed a large deviation between theory and experiment
for driving frequencies in the vicinity of a harmonic of the resonance
frequency of the bubble. It will be shown that the new theory is closer
to experimental data in these sensitive frequency ranges and thus is a
better model for the thermal damping in the bubble.

The first chapter contains a brief derivation of some of the basic
equations in cavitation. Included in this section are the well-known
Rayleigh equation and the Rayleigh-Plesset equation. The more advanced
equations for radial bubble osciilations are discussed as well and

relationships between them are pointed out. After establishing the
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heating term is given by Prosperetti [8] as
pcp[d’f] * Q[BT]pdt 7o KD, (40)

where T is the internal temperature, cp the specific heat of the gas at
constant pressure, and K is the thermal conductivity of the gas.
Multiplication of equation (38) by cpT and adding it to equation (40)

results in
dloer] + T[22 € _ ¢ . (xv)
dc |’ p{aT| dt : (41)

Using the ideal gas assumption it is easy to show that

T|io
OCPT = -‘Y—I_l_ P and [;} [a—,‘;‘]p = -1, (42)

Sustituting equations (42) and (37) into (41) results in

Y%J,v.[u-[%}]xw]=o. (43)

Because of the previously assumed spherical symmetry, one can multiply
both sides of equation (43) by dV and integrate. Applying the

divergence theorem to the second term yields the following

[{1)ap -1 =
J[Y_P]J? dv + “ U - [:{;—]KVT} dA = 0. (44)

Carrying out the integration yields

3.
4P _ o Iy=1},eT 2 _
3P + [ ) [——YP]KarJAnr 0. (45)

Now, solving for the gas velocity U gives
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[@H + UQE] + &9 T, (35)

where p, P, U, and T denote the density, pressure, radial velocity, and
viscous stress tensor of the gas in the bubble. r = 0 corresponds to

the center of the bubble and r = R corresponds to the wall of the bubble

of radius R. The boundary conditions for the velocity are
U(r=0,t) = 0 and U{(r=R,t) = dR/dt. (36)

From the assumption of spherically symmetric oscillations and
radial gas velocities, it is clear that the internal pressure Pi is only
a function of the radial coordinate r and time t. In section C of this
chapter we will show that order of magnitude estimates reveal that we

can replace equation (35) by

P, = Pi(t) or P, = Pi(R) (37)

since R = R(t).
Next, the continuity equation is considered ( see for example

Batchler [23] )

_Dt + pV U = 0, (38)
where

D 3 3

——— = — ——— . 9

Dt at + Uar (39)

Finally, the conservation of energy equation without the viscous
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B. An exact formulation for the internal pressure

The need for a more accurate expression for the internal pressure
of a bubble as a function of both the bubble radius and time led
1 -osperetti ({10] to a direct approach using the conservation equations
for the interior of a bubble. The derivations that follow are along the
lines given by Prosperetti.

Certain assumptions about the geometry of the bubble oscillations
and the nature of the gases and liquids will be made from the start of
the derivation. These assumptions set some limitations on the theory
that follows. These limitations will be discussed in detail in section
C of this chapter.

The first assumption made is that the bubble oscillations are
spherical and that the velocity of the gas in the bubble 1is only a
function of a radial coordinate and time. Fanelli et. al. ([41] have
shown that diffusion of gas in and out of the bubble is only important
at 1low ambient pressures and hence the assumption of no mass transport
across the bubble wall is appropriate. This study is only concerned
with Subble oscillations in water at or near room temperature. Since
the vapor pressure of water at room temperature is small compared to
that of the gas in the bubble, it is neglected in our derivation. The
final assumption is that the gas in the bubble is an ideal gas.

The momentum conservation equation can be written as follows ( see

for example Aris [24])
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Until recently the polytropic approximation was thought to be quite
accurate over a wide range of driving pressures, frequencies, and bubble
radii that are of interest. However, Crum and Prosperetti [19] have
shown that the polytropic approximation can give quite different results
when the driving frequency is in the vicinity of one of the harmonics of
the resonance frequency of the bubble. It is this difficulty that led
Prosperetti to search for a better expression for the internal pressure,

which is the subject of the next section,

T T e e e
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reference [18]. Even though equation (28) looks quite different from

(26), substitution of

H=(P-P)/o, (32)

into (28) with C held constant simplifies (28) to (26). Thus, these two
equations are actuaily quite similar.

To this point, only the fundamental equations for radial
oscillations have been discussed and not the problem of how to model the
internal pressure. For some time now the internal pressure has been
approximated by an expression involving a polytropic exponent of the

form given by Zwick [40]

P, = Po(Ro/R)". (33)

Here x is the polytropic exponent and Po is the internal pressure of the

bubble at equilibrium defined by
Py = Pm + 20/Rg R (34)

where Ro is the equilibrium radius of the bubble ( note that equation

(30) is of this form as well ). Using this approximation for P,, it 1is

i’
straightforward to solve equation (25) numerically using a fourth order
Runge-Kutta method to a high degree of precision. There are of course
other numerical methods to solve this type of second order nonlinear

ordinary differential equation, but the Runge-Kutta method 1s probably

the most widely used and suffices here.

D T T P T Tt i U S O P PR PO
.........................

.
(Y

LT T YA YL . N AL I AP VL PR AL P O R ]
Randianll oA o2 o n LB . o0 Sl g e b e ot e P NP P I T, T T S Ay N W

2 s




NE 2P N v e g L v L e A o .. g . o
AN AR At Tl R S S e R I R R N MM AT A DA T Y A At B it Bes Yo S ~hi tal M AR N

12

by the condition on the normal stresses

P (R,t) = P(R,t) + 20/R + 4uR/R. (27)

It is easy to show that as c¢ approaches infinity, equation (26)
simplifies to the Rayleigh-Plesset equation (25).

There are numerous equations equivalent to or similar to equation
(26) in the literature [30,32,35,37]. Prosperetti [38] has discussed
this fact and argues in favor of equation (26) for reasons of better
numerical convergence. For this reason equation (26) is used as one of
the fundamental equations for this study.

Another equation which is very popular in the literature is that by

Gilmore [30]; however, the form used here is given by Lauterborn and

Suchla [18] as

R[l - B]ii +é[1 - E}ﬁz - [1 _ B]H _ 5[1 _ E}Ri*l _o,  @®
c 2 c c

where H is the free enthalpy, which for water is given by

n Al/n

n-1

H= {[PR) + gy (@-1/n - (P, + gy (n=1)/n; (29)

The pressure at the bubble wall P(R) and the speed of sound ¢ are given

by
3Y :
P(R) = [Po + —ZREJ (l%‘.} - —ZRE - %5 (30)
and
- [C3 + (a-1)H)™. (31)

Typical values of the constants in these equations are given 1in

y - { \. ‘-: -"- TatAte ...-‘ ......... \.»e\'.'..-..,.z..‘_ -, ...'_“-‘ S
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time, the solution of (21) is of the form

k -
¢ = Ar + Br k. ) (23)

The boundary conditions imply that A = 0, k=1, and B = -RR2. Thus,

equation (23) becomes

ﬁRZ

- (24)

¢=

Now substituting equations (24) and (20) into (22) yields the Rayleigh-

Plesset equation

N:Lu

o2 211
o

RR + [Pg(R,t) - () -2 - 4uR) (25)

There are many equations in the literature describing spherical
bubble oscillations [37]. Probably the best-known of these equations is
the Rayleigh-Plesset equation (25). One of the limitations of this
equation 1is the assumption of an incompressible liquid. This 4{implies
that the speed of sound in the liquid must be infinite. Prosperetti
[38] has shown that following the procedure used by Keller and Miksis
[39] the following equation of motion for the radial bubble oscillations

can be obtained

Rlos L 322 (, _ R)[, . R] PR,t) = Ps(t+R/c) , R dP(R,t)
[1 - c]RR + 3R [1 3c] [1 + C} > * e 4o - (26)

Here P(r,t) is the pressure on the external side of the bubble wall. 1

The pressure P(R,t) is related to the internal bubble pressure Pi(r,t)

i e B
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3¢ 2(V¢)2 +h=0. (18)

Setting the right hand side of equation (18) equal to zero implies that
¢ approaches zero as r approaches infinity. The other boundary

conditions on equations (17) and (18) are

a¢d - B
[5: R] r=R(t) (19)
and
P (R,t) = P(R,£) + 2R—° + 4UR/R, (20)

where Pg is the pressure in the bubble, P the pressure on the liquid
side of the interface, and o the surface tension of the 1liquid.
Equations (17) and (18) together with the boundary conditions (19) and
(20) have been the subject of considerable theoretical work [30-37].

The equations above can be simplified by assuming in the continuity
equation that the speed of sound ¢ is infinite, implying that the
density o 1is constant. These assumptions reduce equation (17) to

Laplace's equation

¢ =0 (21)
and equation (18) to
3
—9 2(w»)2 + 3—39 = ——PS‘;“—), (22)

where Ps is the variable part of the pressure in the liquid. Since

these equations are only dependent on the radial space coordinate and

‘ Lo e . -
o, ,\‘_v‘!" -) PR ,.4:""..‘. RN
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where

D )
etV (13)

Here, yu is the viscosity of the liquid and p is the density of the
liquid, both assumed to be constant. For our purposes the term in
equation (12) 1involving the viscosity is small, and together with

equation (9) we can write equation (12) as

du du _  13P
5e VY = par ° (14)

‘ Congsidered here are bubble oscillations where the internal
temperature remains low enough so that evaporation and condensation at
the interface can be neglected. This assumption allows us to treat the

» liquid as isothermal and an equation of state involving the pressure and
density can be assumed, which 1leads to the following expressions

involving the molar enthalpy h and the speed of sound c¢ [28]

pdh = dP and c?dp = dP. (15)

Assuming a velocity potential ¢ such that

= =a_£
U=9¢ and u 5o (16)

the continuity equation (11) becomes

V¢ +

2 3—“&} = 0. (17)

c2[5€ METRL:

Performing one integration results in the Bernoulll integral

AR RIS e -.‘,,. , R LR

ROk U LR RS RO




b This famous equation can be very useful as a starting point in deriving
acoustic cavitation theories.

Next, the acoustic cavitation equations are defived by starting

4 from first principles = namely the conservation equations. Since

spherically symmetric oscillations are dealt with exclusively, the

velocity in spherical coordinates is given by

[
U = ue_, where u = |U|. (9)
There are numerous texts in fluid mechanics and transport phenomena, but
. several advanced texts that are particularly useful are those by
Batchelor [23], Aris [24], Bird, Stewart, and Lightfoot [25], and Landau
and Lifshitz [26]. Some intermediate texts that are useful are those by
&
Lu [27], John [28], and Bertin and Smith {29].
The continuity equation or conservation of mass equation can be
written as
[
%40 . U =0 (10)
at *
Using equation (9) for U this becomes
3
ap 3 . p 3 | 2
a—t+ua—t'+-;23—£ru =0, (11)
. where r is the radial coordinate measured from the center of the bubble.
The equation of motion or conservation of linear momentum equation known
as the Navier—-Stokes equation can be written as
9 DU _ _ 2
o5t VP + wvlU, (12)
]

. R R R e A T L R - S T N A AT P T Rt e T Nt R I TR
A S KA L K AR AR S A A AU A IS I A S I o A S S S S e S S ot Sy S i S GO S S

P,




s e - e o™ - . - - - - - . - -« - . - . . . . . .
e P T P AP P e e e T S e e e T e e e e T e e e e e e e T T e e e e et

u = RZR/r?. (3)
Substituting equation (3) into (2) and integrating results in the

kinetic energy given by
K = 2mpR3R2, (4)
The power J can be defined by

J =F « u, (5)

where F is the force which equals pressure times area and u 1is the
velocity of the fluid. Since the force and velocity are both radially

directed and antiparallel, the power at infinity becomes

J = 1im (-P ][4ﬂr2 I. (6)

Tr—>oo
Substituting equation (3) for u and recalling that the pressure at

infinity is P0 we get
J = ~B_4nR’R. (7)
The time derivative of the kinetic energy (4) is given by

J = 2mp(3RZR® + 2RPRR). (8)

Equating the power (7) with the time derivative of the kinetic energy

(8) results in the Rayleigh equation

. 3,
RR + 2R = —Po/p.

(1)

f ., w0




Chapter 1

Theoretical development

A. The acoustic cavitation equations
Before discussing the derivation of the acoustic cavitation

equations, let us first recall the method of obtaining the Rayleigh

equation [3]
RR + 2R%= -P _/ (1)
2 o/P-

Here, R, Po’ and p denote the bubble radius, pressure at infinity, and
density of the liquid respectively. Dots denote differentiation with
respect to time. It {is assumed that the 1liquid 1is inviscid,
incompressible, and has no surface tension; also the internal pressure
is assumed to be zero.

Following the method of Batchelor [23], the time rate of change of
kinetic energy of the fluid is assumed to be equal to the power

developed at infinity. The kinetic energy of the fluid is defined by
[~ ]
K = f Yo4rriuldr, (2)
R

where u is the magnitude of the fluid velocity. The continuity equation

together with the above assumptions imply that the magnitude of the

velocity can be written as

T
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o The temperature profises will prove very helpful in determining  what
type of damage could be caused by therapeutic and diagnostic ultrasound
instruments. .

o The results 1in chapter 4 are separated from those in chapter 3
because they come from a completely different approach to understanding
how the model behaves under certain initial conditions. The system of

o equations describing the bubble motion is viewed as a dynamical system.
In analyzing the dynamical system some of the recent techniques such as
those by Ott [20], Huberman and Crutchfield [21}, and Grebogi, Ott, and

¢ Yorke [22] are employed. This analysis will show that the type of
damping used in the equations dramafically alters the results of these
techniques.

®

Finally, in chapter 5 some general conclusions are drawn from the
information compiled and suggestions are made as to what direction new
research should follow. Ideas for both new experimental work, not

&

discussed in previous chapters, and improvements in the theoretical

model will be presented.
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o fundamental equations of acoustic cavitation, the internal pressure 1is
then considered. The method of Prosperetti [10] will be employed in
developing the theory used to solve for the internal éressure. Chapter
® 1 concludes with a brief error analysis for all the terms discarded 1in
the conservation equations, which are used to solve for the internal
pressure.
® Chapter 2 deals with the numerical solution of the system of
acoustic cavitation equations that is derived in chapter 1. The first
step is to find the dimensionless form of all the equations that will be
¢ used in computer programs. Next, the numerical techniques used to solve
this coupled system of nonlinear grdinary and partial differential
equations along with the finite difference representation of the
© equations are described in detail. A brief error analysis for the
numerical methods used concludes this chapter.
Chapter 3 contains results not previously kn;wn and comparisons
¢ between the new results and those of previous theories. In particular,
radius verses time curves for several models and frequency response
¢ curves such as those by Cramer [17] and Lauterborn and Suchla (18] are
compared to the new theory. A good test to determine how well the
theory estimates the damping is to compare theoretical levitation number
¢ curves with the experimental ones obtained by Crum and Prosperetti [19].
Chapter 3 concludes with a discussion of the internal thermodynamics of
bubbles., Both tewperature profiles and pressure curves are presented
< as a function of radius or time for a variety of {nitial conditions.
[ ]
kz::-}::e:-:-;-:-:}r:_-}}r};&::-:-:-:}:-L;-;:-:—:;—:fl;-;lzz-f}':-.fr;l--:‘-;-~;L_~:;-;-3-L-:;-~;-'--::-ii--i;-';i;‘-IiiL-'-:i;:;i‘:-i;;-i':-i-;-ig-i;:-iili-'-‘- BSOSO
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®
-1 3T _ 1.3 (46)
U YP[(Y l)Kar 3 rP].
® Using the boundary conditions (36) and evaluating equation (46) at r = R
gives the following ordinary differential equation for 12
P o= 2 -1k [ Z]] - yeR]. (47)
R o’ | 3r
) R
With the approximation of uniform pressure, equation (47) contains

all of the information present in the continuity equation. Having
already simplified two of the three original partial differential
equations, we turn our attention once again to the energy equation.

Using the ideal gas assumption, equation (40) becomes

P3T , .3T] _ s _ o .
[i%i}f[52 + U5;] - P =7V - (KVI), (48)

where U and dP/dt are defined by equations (46) and (47) respectively.
The boundary conditions for equation (48) are continuity of temperature
and heat fluxes across the bubble wall. If the liquid is cold enough so
that the vapor pressure of the liquid is small compared to that of the
gas ( an assumption which holds at room temperature ), one can assume

that the temperature boundary condition is

T(r=R,t) = T_. (49)

This assumption greatly simplifies the solution of equation (48) and
will be discussed at length in section C of this chapter.

during the collapse phase of the bubble motion, the gas temperature

''''''''''''
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can be exceedingly high. for this reason one must take into account the
variation of the thermal conductivity K(T) for the gas in the bubble.
Since the temperature of the gas is a function of both position and
time, so is the conductivity. This presents a problem on the right hand
side of equation (48). The standard technique for dealing with this
difficulty is to define a new variable T as an integral of the
conductivity over appropriate limits such as

T
T = J K(x)dx. (50)
T

- -]

Another standard change of variables to simplify equation (48) is
to define a fixed boundary rather than a varying one by introducing the
new radial coordinate

y =1/ R(t). (51)
Using equations (46), (50), and (51) along with some algebraic

manipulations one can write equation (48) as

CAA | ol S - S
5t * [YPRZ][ay Yay

3T s _ D o2
1}8y - DP = 32V71, (52)

where the Laplacian is with respect to y and D(P,t) is defined by

LK@ _ [y=1)xmT
D(P,t) cpp(P,T) ( Y } P (53)

which is the form of the thermal diffusivity for an ideal gas. The
boundary conditions for T are given by
T(y=1,t) = 0. (54)

The substitutions (50) and (51) are also made in equations (46) and

.....

......
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(47). The new forms of these two equations add nothing to the theory
and will be omitted here. They can be found in chapter 2, section A.

All of the equations necessary to solve for the bﬁbble's radius as
a function of time using the new model for the internal pressure have
now been derived. Because of the techniques employed, one also gets
P(t) and T(r,t) as well as R(t). The temperature information will prove
to be very important in some practical problems discussed later.

The method of solution of these equations is simple in principle.
The Rayleigh~Plesset equation (25) or an appropriate equation containing
the compressibility terms (26) is coupled to the energy equation (52),
the pressure equation (47), and U = dR/dt. One can solve this system of
differential equations for the radius, pressure, velocity, and

temperature as a function of time by using numerical methods. The exact

method of solution is discussed in detail in chapter 2 section B.
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C. Limitations of the exact formulation

In numerical modeling of physical problems, there is wusually a
compromise between the degree of accuracy desired and the amount of
computer power available to do the analysis. As the accuracy of the
equations 1s increased by adding smaller and smaller physical effects,
it sometimes happens that a set of equations {s arrived at that is too
complicated to solve. Without the aforementioned approximations for the
internal pressure of a cavitation bubble, the new model would have this
problem. However, enough information has been included in the equations
to give considerable improvement over previous models for the range of
parameter values which are of interest. As one ventures out of this
parameter range, one might hope, but should not expect the new theory to
agree very closely with experimental values.

The focus of this study is to show an improved performance for the
fundamental equations given in section A of this chapter. Since all of
these equations assume radial oscillations, it is assumed that this is
the case for the treatment of the internal pressure. Prosperetti [42]
gives conditions favorable for non-spherical oscillations and the
parameter values used exclude this type of behavior. Using a Levitation
cell like the one used by Crum [43], one can easily detect the onset of
non-spherical oscillations. This device 1is used for experimental
measurements and one can determine if appreciable non-spherical
oscillations are occurring which might cause the data to deviate from

those predicted by the theory. One can conclude that any differences

'.\ 0 LN ) LS L. -
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between theoretical and experimental values must be due to some other
approximations we have made.

In the derivation of the fundamental equations in section A of this
chapter it was assumed that the bubble wall velocity is equal to the
liquid velocity at r = R. Prosperetti [44] has shown that this is valid
only if 1little or no mass transfer takes place across the interface.
The error due to this effect is of the order of the ratio of the density
of the gas in the bubble to the density of the surrounding liquid. A
typical value for this ratio is 0.00l or less.

Previously, the momentum equation (35) was shown to imply that
P, = Pi(t)' This required the assumption that all of the terms in the
momentum equation contribute to but a small spatial pressure difference
in the bubble. Prosperetti [10] gives a short account for each term in
equation (35). The overriding factor in keeping AP/P small for the
terms on the left hand side of the equation is the mach number M. As
long as M < 0.1, all of the terms on the left hand side give rise to a
small value of AP/P. The viscous stress term on the right hand side of

equation (35) can be written as [29]

e p o= wwlu = uls, |28
Voez=uu “{rzar[r Brn r=p °’ (55)
where
U = Rr/R. (56)
Substitution of (56) into (55) gives
v . . = 2uR (57)
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Prosperetti [10] has shown that the contribution of equation (57) to the
pressure gradient in the bubble is approximately Zuﬁ/PR. Assuming that
the viscosity of air at room temperature is approximately 1.8X10_4
Poise, a bubble radius of 50 microns, and a pressure of 1 atmosphere,
one obtains a value for AP/P of approximately 0.001.

The small value of the viscosity of air also allows us to neglect
the viscous heating term in the the energy equation (40). The form of

this term is given in reference [25] as
S° = WR/R. (58)

The internal gas has been modeled as an ideal gas in several places
in the theory. This seems reasonable for the temperature and pressure
ranges that are of interest. This choice is easy to justify since the
largest deviations from room temperature and standard pressure are
toward higher values as the bubble collapses. Callen [45] shows that at
higher temperatures air behaves more like that of an ideal gas. Because
of their complexity, more exact equations of state would not be easy to
incorporate into the theory.

Finally we need to discuss the error introduced when the boundary
condition (49) 1is used for the energy equation (48). As long as the
vapor pressure of the liquid is small compared to that of the gas
pressure, one can assume that very little vaporization and condensation
takes place over one cycle. This restriction implies that there is very

little heat exchanged on the boundary in the form of latent heat. The

...........................
......
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other process by which heat is exchanged on the boundary 1is by
conduction across the interface. Prosperetti [10] has shown that 1if Tc’

Ts’ T,» and K are the center temperature, surface temperature, ambient

liquid temperature, and the thermal conductivity, then if the heat

fluxes in each region across the interface are set equal we get
1

Ts = Ta  |Kgeprg
4]

(59)
To - Tg Kicpiel

where 1 and g denote the liquid and gas regions respectively. A typical
value for the right hand side of (59) is 0.00l. This implies that Ts is
approximately equal to T_ as was assumed in the boundary condition (49).

When the liquid temperature is high enough so that evaporation and
condensation are important, one must be careful in applying this
approximation. Prosperetti [10] gives a thorough discussion of this
problem. For the liquid temperatures that are of interest, however,
this does not present a problem.

Bec.1se of the complexity of the conservation equations and the
many approximations that have been made, one might ask if it is really
worth all the trouble to solve for Pi in this manner. It will become
evident 1in chapter 3 that the extra work involved here pays handsome
dividends in terms of a theoretical model which more closely

approximates experimental observations. In chapter 3 the theories will

be compared to each other as well as to experimental results.

TR ——




Chapter 2

Numerical solution of the equations

A. Dimensionlesé form of the equations

Perhaps the first step 1in solving a system of differential
equations numerically is finding a dimensionless form of the equations
[46]. In many cases a dimensionless form of the equations is much more
stable from a numerical point of view. It is also much easier to
compare the accuracy of different numerical methods if the equations are
in a dimensionless form. Before describing the nondimensionalization
procedure, let us first recall the four equations in the new system with

the change of variables given by equations (50) and (51)

1-Blri + 282 |1 - Ry 4 B BRs®) - Pg(t#R/c) | R dP(R,E) (¢
c 2 3c c o pc dt
ot o fy=l f1ar _ T} 19T 8 . D oo 52
5¢ T [yPRzNay Y3y 1}3y DP = g2¥71 (52)
. _ 3fy=1{at _ . (60)
P = R[ R {ay] 1 YPR] ’
and U = dR/dt. (61)

In the definitions whic follow, dimensionless quantities will be

denoted with a subscript *. A suitable value for a reference length is

25
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the equilibrium radius Ro. The internal pressure at equilibrium, Po,
which is related to Ro through equation (34), is used as the reference
pressure. The reference time used is the reciprocél of the driving
frequency @ and the reference temperature used is the ambient liquid
temperature Te. These and other derived quantities are listed below for

later reference

R=RR,, P=PP,, t=t,/u,

P, =P P> P =PP,, T =TT, (62)

c = wRoc*, T = DOPOT*, D = DoD*'

The appropriate form of the different derivatives in our system of

equations is calculated next. The time derivatives of the radius are
R=wRR, and R = szoR* , (63)

where the dots over starred variables denote differentiation with
respect to the dimensionless time t_. The other derivatives necessary

to complete the non-dimensionalization process are

D = 2 _ 2
P = mPoP*, Vet = DOPOV Ty

3T L pp AT 3T L pop 2T
9 Dopomat* 3y DoPoay » and (64)

&

DoPo T+
y=1

r=R ROR*K(Tw) dy

where several steps have been omitted, particularly in the last
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equation. An important step in obtaining the last equation is

recognizing that

dT
o T KD (65)

by applying Leibniz' rule to equation (50) and taking the reciprocal of
the result. Using the substitutions given above, the new system of
equations becomes

(1 - MR, + 1.5(1 - M/U] = 2((AD (P, - P, - P_, (¢, + R,/c,)

. (66a)
- W/R, - YU,/R,) + R,c,P,],

I T* 3Tk 9T s XD*VZT*
][— - Vv y=1] v D*P* - R ’ (66b)

CAL NN el § 1
It Yy |X{P.RZ

y
* #Ry) L3y 3y Iy *
. 3[ X |o1%
P, = = [(y-1) [—— ] -1 ~ YP U_] s (66c)
* R, R, 3y Jly=1 *
and U, = dR,/dt,, (66¢)
where
z Po W 20 y = Aulw
= ~—anz °* = ’ = »
plw Ro ROPO Po
32 23 ©7)
2 2 T Tx
= = + ==K,
X DO/ (wRo) , and ¥ Ty 5;-5- vy

In order to calculate D, it is necessary to find the temperature T from

the integral equation (50). One can easily solve for T provided K(T) is

of the form

RAdra s an Pt TR
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K(T) = 5.528T + 1165. (68)

Equation (68) was determined by a simple linear regression routine on

the experimental data given by Weast [47] (see figure 1). This linear
equation for K(T) enables one to integrate equation (50) analytically
and obtain a value for T from the resulting quadratic equation.

This concludes the nondimensionalization process for the system of

equations. The details on how to solve these equations is the subject

of the next section of this chapter.




Prp———

000E

*uTAT3Y seai8ep uTr aanjeiadusy pue

(M, +09s-wd) /5319 jo s3Ifun ul KITATIONPUO)

JOo uotjouny e se itk Jo AITATIONpUOD Tewiayy

*aanjeaadwa)
*1 @2an314

44N 1lVdddWdl

00%2 0002 00G1 0001 00% O

T ] v i) T | T T v T 0
X ]
- <1000S
K N
- 00001
- 1
L 400051

»
2 ] 2 ] 1 | 3 | 2 L DDDDN

ALIATLINANGI




30

B. Finite difference equations

The system of dimensionless equations derived in section A of this
chaprter 1is now solved using numerical methods. Because of the
complexity of the system and the coupling between the equations, a
multistep method is used. These types of methods offer good accuracy
without being as time consuming as some of the single step algorithms
such as the Runge-Kutta method.

The algorithm used is as follows. A simple predictor-corrector
multistep method is applied to our system of equations ([50]. This
technique can be illustrated by letting

ax

T = FW. (69)

The vector X denotes the quantities radius, velocity, pressure, and
temperature. EKE) is the functional form of the time derivatives of the
aforementioned quantities. Using finite differences one can write

equation (69) as

n+l ntl

X" = X"+ SR ra + ™. (70)

. o s +
However, one cannot solve this equation explicitly for 5? 1 because of
the complexity of the system of equations. The predictor-corrector
scheme overcomes this problem however.
+1

. n .
In the predictor step an approximate value for X is computed

using an Euler method [48] of the form

Xn+l - EI'l + At{(ﬁn). (71)




- L L4 - LY . - ry -
e R R I ey

31
. : n+l | . .
This predicted value of X is used in equation (70) to get a more
n+l . .
accurate value of X . In actual practice this corrector step 1is
repeated a second time for additional accuracy. One could repeat this

process over and over, but experience has shown that two iterations 1is
sufficient for our needs.

If one finds certain initial conditions and parameter settings
which cause the corrector process to converge slowly, a more advanced
predictor—corrector algorithm such as the Adams-Moulton method [48] can
be used. For the conditions that are of interest, however, the simple
method suffices.

Although the techniques outlined above are straightforward in
principle, they are rather tedious to apply because of the complexity of
the system of equations. In the remainder of this section, a step by
step procedure on how to implement this method for this svstem of
equations is discussed. Those not interested in this detailed guide to
the solution of the equations are encouraged to skip to the flow chart
at the end of this section without loss of continuity.

The first phase of the method is to predict new values of the
variables using the Euler equation (71). For convenience the subscript
* npotation for dimensionless equations (66) 1is dropped. Predicted
values will be denoted with a tilda over them. The first step is finding
a predicted pressure at the n+l time step. This requires the evaluation

dP/dt at the nth time step by

0-12
en 3 [(y=1)x ( N n_n
P'Rn[Rn uy}‘*”}’ (72)
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Chapter 3

Computational results

A. Radius verses time curves

Of all the information obtained from the computer programs, perhaps
the simplest to understand and analyze is the radius verses time data.
This information gives a numerical picture of the bubble at each time
step. One can compare these radius—-time curves for different models at
a variety of initial conditions and make some conclusions as to where
the models agree and disagree. Because some models such as the exact
formulation require large amounts of computer time, it is useful to know
when a simpler model gives results that are sufficiently accurate for
one's needs. For this reason we not only show results from the new
formulation but also include the results from other methods as well.
One can also obtain information about the phase difference between the
driving pressure and the bubble oscillations. This phase difference is
related to the damping of the system in a complicated manner. Finally
one can find the spectrum of the radius—time curves by a simple fourier
analysis of the data. This fourier analysis of the curve shows which
harmonic modes are dominant in the bubble's radiated noise signal.

In figure 5, the radius verses time curves are compared for an
equilibrium radius of 50 microns, a driving pressure amplitude of 0.4

bar, and a driving frequency of 0.4 times the linear resonance

44
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temperature of bubbles at known driving pressures and equilibrium radii.
An investigation of this nature is presently under way and the results
should be available shortly.

In closing we should mention that experience has shown that by
examining a few cycles of the numerical solution, one can easily decide
whether equation (70) is stable or unstable. For the stable solutions
at high amplitudes, one must wait for new experimental results before
deciding how well the new theory models a real cavitation bubble in this

extreme region.

oy




D.

Applicability

In the next chapter the
to be more accurate than the

This 1is shown by examining

method and comparing them

Prosperetti {19].

el Taad sl Sull e e
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values given by the new equations are shown
ones given by the polytropic approximation.

the predicted levitation numbers of each

to experimental ones obtained by Crum and

Unfortunately, the 1levitation number data is still at rather low
amplitude and one cannot tell how accurate the solutions are in high
amplitude regions. One possible experimental method to test the

validity of the numerical solution at high amplitudes is outlined below.

One
fast photo-diode and a good
signal

produce a

relations given by Hansen.

time signal one could compare the numerical solution at high

to this experimental one.

way and when completed it

nonlinear bubble oscillation

that is related to the radius of the bubble

could use the light-scattering technique of Hansen [51] with a very

low noise amplifier attached. This would

by the

Once properly converted to a radius verses

amplitudes
Work on this experiment is presently wunder
should provide a definitive test for all

equations.

Another test for large amplitude oscillations is determining the

interior bubble temperatures experimentally by observing sono-

luminescence and comparing them to the numerical values. Dissociation

of water molecules into hydroxyl free radicals and hydrogen starts

taking place at well defined temperatures [7], which should enable

experimentalists to obtain very accurate data on the interior
e e L e T S e T e e e e T e
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insight as to how well the numerical solution approximates an exact
analytic solution to the system of equations if one were available. One
can make several tests, however, to increase one's confidence in the
method used. As a preliminary test the numerical solution for the
radius as a function of time is compared to an analytical solution which
uses the polytropic approximavion and is valid to first order [15]. of
course this comparison can only be made at low driving amplitudes since
the analytical solution is only accurate in the low amplitude 1limit.
Figure 3 shows this comparison for a 50 micron bubble driven at half its
linear resonance frequency at a pressure amplitude of 0.01 bar. The
figure indicates that the numerical solution is nearly identical to the
analytical one when driving amplitudes are small. This reassures us
that a fundamental mistake has not been made in either deriving the
system of equations or in solving them numerically.

For more woderate amplitudes, a comparison is made between the new
results and numerical solutions of the Rayleigh-Plesset equation with a
polytropic approximation, using a fourth order Runge~Kutta method. The
program used to do this calculation was first written by A. Prosperetti.
An updated version with modifications made by the author is included 1in
appendix B. Figure 4 shows a comparison between the two models for a 50
micron bubble driven at half its linear resonance frequency and a
pressure of 0.50 bar. For this case there is a small difference between
the two solutions, however, they are similiar enough to reassure us that

the new solution is working properly at this amplitude.
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C. Error analysis

A formal error analysis of the complete system of equations in all
its detail would be quite difficult. One can, however, give a more
general error analysis for the basic methods used, that is, for
equations (70) and (71) and the Crank-Nicolson implicit method.

The Euler method or equation (71), which is used as the predictor
in the algorithm, has a local or truncation error of order (At)2 and a
global or cumulative error of order (At). Equation (70) is known as the
Modified Euler method or the Euler predictor-corrector method. The
truncation error of the Modified Euler method is of order (At)3 and the
cumulative error is of order (At)z. For completeness one should also
mention the Adams—-Moulton method referred to in the previous section.
This method has a truncation error of order (At)5 and a cumulative error
of order (At)h, which is the same as a fourth order Runge-Kutta method.

The Crank-Nicolson method is embedded in equation (70). This
method is an implicit one and because of the judicious choice of the
constants multiplying the finite difference approximations, the method
has a truncation error of order (At)2 and (Ay)z. Since this method is
always stable, one knows that errors created at each time step must
decay exponentially [48]. One of the nice features of damped driven
nonlinear oscillators is that as long as the algorithms are stable the
numerical solution is usually being forced toward the exact solution of

the equations.

The error analysis above does not, however, give any physical
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(88)

Finally the corrected values for the dimensional temperature and the
thermal diffusivity are £found by replacing the tilda variables 1in
equations (77) and (79) with the corrected variables denoted by carets.
In order to increase the accuracy at the new time step even more,
a second correction exactly the same as the one just described is made.
It is these second corrections that are used for the values at the n+l
time step. At this point in the computer program, all of the variables
that are of interest are written out and then the variable names are
updated. The entire process is then repeated starting at equation (72).
A 1listing of the computer program is provided 1in appendix A.
Figure 2 is a flowchart for the program and provides a qualitative view
of how the system of equations is solved. The error analysis for the

numerical methods used is found in the next section of this chapter.
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) and the corrected pressure derivative from equation (66c) is given by
0_%n+l
ant1 3 (y=1)X N antlantl
Pl - [ BT (88)
Rn+1 Rn+1 Ay
» Finally the corrected values for the dimensional temperature and the

thermal diffusivity are found by replacing the tilda variables in

equations (77) and (79) with the corrected variables denoted by carets.
4 In order to increase the accuracy at the new time step even more,

a second correction exactly the same as the one just described is made.

It 1is these second corrections that are used for the values at the n+l

¢ time step. At this point in the computer program, all of the variables
that are of interest are written out and then the variable names are
updated. The entire process is then repeated starting at equation (72).

© A 1listing of the computer program is provided in appendix A.
Figure 2 is a flowchart for the program and provides a qualitative view
of how the system of equations is solved. The error analysis for the

d numerical wethods used is found in the next section of this chapter.
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AtX y-1 -+l .o+l ~n+1 ~n+1
- 2ay 251 [Y~n-1 Ba(Tyy) - T3 ) + 3%y 1 +0D L a-syly AR
~n+1
AtXD,
i n+l AtX v-1 L, ~ntl _-n+1 84
’ [1 ¥ AyZin+12] ot 20927012 [Yf,n+1 Pty ~T3p) (84)

~ =ntl oo
+ Y.tn+1 AR

n .
F n+l n At Lgl | + D Pn+1].
i'N N

(”AY/yi)] S A N T PR

The next step 4in the corrector method is finding the corrected
bubble wall velocity. Again, equation (70) is applied as before. One
must be careful, however, because the.£Q§n+1) term has both predicted
and corrected velocities in it. The appropriate form of equation (70),

before solving for the corrected velocity explicitly, is given by

ﬁn+1 - Un + %; ﬁn + n+?t [ 1.5(1- M/3)Un+1 n+l
(1-M)
~n+l n+l ~n+1 W+YfJn+1 ~n+1 n+1
+ Z[(14M) (P -P,-P (¢t +R /e) - ——— + R 1. (85)
s §n+l

+ gt Entl ]] _
After equation (85) is solved for the corrected velocity explicitly, the
corrected radius at the new time step is found by applying equation (70)

which gives

ﬁ“+1 - Rn + (Un+Un+1) (86)

Using the corrected values of temperature, velocity, and radius

one finds that the corrected pressure from equation (70) is given by
~n+l

0-1
sn+l _ on At s 3t (G=Dx{ 27'N _ _pntlantl)

MG g G L A R ""w
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variable, one starts the corrector algorithm using the method of
equation (70). The corrected variables will be denoted by a caret above
them. The corrector method begins by solving for a corrected
temperature array at the n+l time step. This time, however, it is not a
simple matter to solve for the new values because one must use a Crank-
Nicolson method [48] to advance the temperature array in time. This is
necessary because equation (70) is accurate to second order and each of
the embedded algorithms must be at least this accurate or one has
defeated the purpose of using equation (70). The Crank-Nicolson method
is an implicit method which requires the solution of a tridiagonal
system of linear equations for the corrected temperature array. In
order to see this more clearly, the energy equation is written in a form
with the unknowns and their coefficients on the left hand side and all
known quantities on the right hand side. As before, the first node has

a special form given by

~n+l ~n+1
L+ izl Zon+l? 2 123t ! .

The general expression for the remaining nodes from 1 = 2 to N is given
by equation (84) below. To solve ‘“is tridiagonal system for the
corrected temperatures, an algorithm by Forsythe, Malcolm, and Moler

{49) was modified for speed. This algorithm is a subroutine called

TRIDG in our main computer program which is listed in appendix A.




-

Gl 3 v .

33

thermal diffusivity D at each node. This requires that the dimensional
temperature be found first by the method mentioned in section A of this
chapter. For each node the dimensional temperaturevis related to the

dimensionless temperature by

~n+l 1 / y=1..n+l 1165
T = — Q(— —_—
i u[ L+2a( Y )Ti ~ K(T.) )’ (77)

where
o = 5.528T,/K(T.). (78)

The predicted diffusivity at node i is given by

n+] ~n+1 =n+l s
By + @ 4 1165 /R(T)TT T /F™L, (79)

We can now return to finding new values for the main variables. A

predicted value for the radius is obtained from

~n+1

R = R" + Acy®, (80)

To find a predicted velocity, one first solves equation (66a) for dU/dt
and evaluates it at the nth time step. After evaluating this

derivative, the predicted velocity is found from the Euler formula by

TR L (81)

The predictor section is concluded once a new value of dP/dt is found by

O—Tn+1
so+l 3 (y-1x N ~n+1~n+1l
3 §n+l [ §n+1 [ Ay } - YP U }- (82)

Having found a predicted value at the new time step for each

vevoyo'y
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¢ where subscripts denote the node or spatial position and superscripts

L

denote the time step. Using Euler's method one finds the predicted

gy

pressure is given by

TR LR (73)

The next step involves the temperature array in the bubble. First

one has to find the temperature derivatives with respect to time at each
node in the bubble. The r=0 node is a special case since the Laplacian
operator is different in the limit as r approaches 0 than at any nonzero

value of r [46]. The center node or i=1 node is found by

Tn Tn
a - L]
= =0 [égy[—g—ilJ + pn}. (74)
1 R Ay

The general equation for the remaining nodes from i=2 to N ( N+1 is the
bubble wall which was assumed to be at constant ambient temperature ) is

given by

n
= ni X Ayl n n Ay | n

=D P————T-Hl + JT - 27, + (1- JT, J

i Ayan Yy i+l i i-1

(75)

Tn _Tn 0- n Tn _ n
430 - 1) _x i+l il DRI !
Y ) prgn? 28y Yi Tay 28y} °

Again using the Euler method one finds predicted temperatures at the new

time step n+l by

n
.n+l n T
T = + —_—

Ti At 5t

(76)

At this point it is appropriate to find predicted values of the

...........................
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L frequency. The Rayleigh-Plesset Polytropic equation is denoted by RPP,
the Rayleigh-Plesset Exact pressure formulation by RPE, and the
Compressible Exact pressure system of equations by CE; The heavy curve

® in figure S5 represents the RPE and CE methods which are practicably
identical. The compressible equation is only necessary when the driving
pressure amplitude is very large and collapse velocities are very high.

¢ It takes only a small amount of extra computer time to use the
compressible equation in the exact formulation, so we will use the CE
method and omit from further discussion the RPE method.

¢ Next, a comparison is made between the solutions given by the CE
and RPP methods for a variety of bubble sizes, driving pressure
amplitudes, and driving frequencies. Figure 6 shows results for an

° equilibrium radius of 50 microms, a driving pressure amplitude of 0.4
bar and a driving frequency of 0.8 times the linear resonance frequency.
The CE method predicts a larger maximum value of R/Ro than does the RPP

¢ method. In figure 7 the equilibrium radius is 50 microns, the driving
pressure amplitude is 0.6 bar, and the driving frequency is 0.8 times

c the linear resonance frequency. Again the CE method predicts a larger
maximum value of R/Ro than does the RPP method. Note also the phase
difference between the two curves which is easily measurable. These

) curves have very large amplitudes, however, and the limits of validity
of the equations may have been reached or exceeded. One can only wait
for new experimental data to determine just how large an amplitude can

. be used before appreciable error occurs in the results.
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Next, several figures for 10 micron bubbles are examined. Figure 8
represents a 10 micron bubble with a driving pressure amplitude of 0.6
bar and a driving frequency of 0.4 times the linear resonance frequency.
Again the pattern is the same as before, with the CE method showing less
damping than the RPP method. One can also detect a difference in the
magnitude of the second harmonic resonance by inspection of the figure
( the small peaks between the larger peaks are mainly due to the second
harmonic ). Figure 9 concludes this set of results with an equilibrium
radius of 10 microns, a driving pressure of 0.6 bar, and a driving
frequency of 0.8 times the linear resonance frequency. Again one gets a
larger response in the amplitude of the pulsation because the driving
frequency 1is in the vicinity of the main resonance, whereas the curves
at the 0.4 frequency are near the second harmonic. In the next section
it 1is shown that the response due to these harmonic resonances is much
less than that at the main resonance.

These figures represent only a few of the wunlimited number of
possible combinations of initial conditions. They do, however, give an
idea of the differences in the two theories presented. With careful
observation one can detect differences in the pulsation amplitude, the
phase shifts between the driving pressure and the bubble response, and
in the magnitude of each harmonic if a fourier analysis is carried out

for the curves generated.
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B. Frequency response curves

One of the best ways of showing how a bubble responds to a driving
force under a variety of initial conditions and parameter settings is
through the use of frequency response curves such as those given by
Lauterborn [18,52] anc Cramer [17]. These graphs show the nonlinear
resonance peaks which help to characterize a bubble. This information
is of interest to those examining the biological effects of ultrasound
since the onset of subharmonic £frequencies 1s often used as an
indication of the presence of violent cavitation. Therefore, it 1is
important to know precisely at what fraction of the bubble's resonance
frequency that these different modes of oscillation prgvail for
different driving pressure amplitudes.

In the figures that follow, results are shown for a variety of
conditions using the new theory. These results are compared to those by
Lauterborn and Cramer to determine where the two theories agree and
disagree. Figures 10-12 are frequency response curves generated by the
new theory for normalized frequencies between 0.l and 1.0. The step
size used in the frequency domain is 0.0l times the resonance frequency
of that particular bubble. Figure 10 shows results for a 10 micron
bubble driven at 0.3, 0.5, and 0.7 bar. Figure 11 shows results for a
50 micron bubble driven at 0.2, 0.3, 0.4, and 0.5 bar. Finally figure
12 shows results for a 100 micron bubble driven from Q0.1 to 0.7 bar 1in
0.1 bar intervals.

Each of the fourteen curves described above took approximately one
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day of cpu time on a Digital PDP 11/73 microcomputer. Of course the
curves which show a large amplitude response took longer than those with
small responses because of the difference in step sizes used in the time
and space domains. This requirement of large amounts of computer time
has somewhat limited the scope of this investigation; this point will be
addressed again in chapter 4.

In figures 13 and 14 new results are compared with those by
Lauterborn and Cramer. Figure 13 shows the frequency response curve for
a 10 micron bubble driven at 0.7 bar. The asterisks represent points
taken from the peaks of a figure by Lauterborn [52} ( the value at
f/fo-l.O is 1included as well ). Note that there is a shift in both
amplitude and frequency between the two theories. As f/fo decreases the
two theories give results that are quite close to one another. Figure
14 shows the new frequency response curve for a 100 micron bubble driven
at 0.7 bar. Here the asterisks represent points taken from the peaks of
a figure by Cramer [17]). Again, one sees the same trend as before, with
small values of f/fo giving even closer results than with the 10 micron
bubble. These figures indicate that the new theory predicts less
damping in the region around the main resonance peak and some of the
subharmonic peaks as well, From the comparison to levitation number
data in the next section one is inclined to believe that this new theory
is more accurate. The definitive test, however, 1is experimental data
which is not yet available.

Close examination of figure 13 and Lauterborn's figure 3 [52]
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the gas inside starts to increase due to heat conduction across the
bubble wall, For small bubbles, the value of the radius where the
minimum temperature is reached is near Ro’ and for large bubbles it is
near the maximum radius attained.

The figures above 1indicate that under the proper conditions,
cavitating bubbles can produce temperatures high enough for free radical
formation. This should cause some concern for those using wultrasonic
instruments for medical purposes. One way to avoid this problem is to
stay away from driving pressures and frequencies that cause large
pulsation amplitudes. To avoid these regions, one must first know the
size of the bubbles in the system of interest. This, however, 1is a
difficult problem in itself and will not be addressed further.

Next, the center temperature of a bubble is examined as a function
of time to see how long it maintains these high temperatures. Figures
22-24 show center temperatures as a function of time for 1, 10, and 100
micron bubbles driven at 0.4 and 0.8 times the 1linear resonance
frequency of the particular bubble. Each figure indicates that high
temperatures occur only for a short period of time while the bubble is
near its minimum size. Figure 22 shows a 1 micron bubble driven at 1.4
bar, figure 23 a 10 micron bubble driven at 0.6 bar, and figure 24 a 100
micron bubble driven at 0.45 bar. The pulsation amplitude for the 10
micron bubble 1s much smaller than either the 1 or 100 micron bubble.
Thus, the maximum temperature attained by the 10 micron bubble is wmuch

less than in either of the other two bubbles.
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volume and time, using the temperature profiles and an appropriate
ionization probability function as the integrand.

Figures 19-21 are temperature profiles for 1, 10, and 100 micron
bubbles at different stages of oscillation. The minimum and maximum
value of the radius for each bubble during one cycle is chosen as the
point where the temperature profiles are taken. The driving frequency
for each figure is 0.4 times the linear resonance frequency of the
bubble. The temperatures shown are normalized with respect to the
ambient temperature of 293 degrees kelvin. TFigure 19 shows a 1 micron
bubble driven at 2.1 bar. Note that when the radius is a minimum, the
center temperature is approximately 3.2 times the equilibrium
temperature. Figure 20 shows a 10 micron bubble driven at 0.9 bar.
Here the maximum temperature attained is approximately 4.9 times the
equilibrium temperature. Finally, figure 21 shows a 100 micron bubble
driven at 0.8 bar. For this case the maximum temperature attained is
approximately 8.1 times the equilibrium value.

In each of these figures the maximum value of R/Ro is approximately
2.0. Thus, the small bubbles behave much more isothermally than do the
large ones. Since the bubble wall moves slowly at large values of R/Ro,
the interior temperature does not drop to the level that might be
expected at the maximum value of the radius. Instead, a minimum
temperature 1is reached when the radius of the bubble is somewhere
between 1its equilibrium value and maximum value during the expansion

cycle. As the bubble approaches its maximum size, the temperature of
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D. Thermodynamics of the bubble interior

As has been mentioned previously, the internal pressure and
temperature of a bubble are of particular interest to those studying the
physiological effects of acoustic cavitation. There are several
mechanisms by which a cavitating bubble can damage 1its surroundings.
The best known of these mechanisms is that of destruction by the bubble
wall itself. This area has been thoroughly studied because of
cavitation damage to propellers on ships. However, we will not address
this method of cavitation damage here. More recently, experimentalists
have found that temperatures inside the bubble can become high enough to
produce free radicals. The free radicals produced at these high
temperatures can pose a serious threat to biological systems. One
method of observing this phenomena is to look for sonoluminescence from
cavitating bubbles.

The exact formulation for the internal pressure of the bubble has
within itself a temperature array for the bubble interior. Thus, one
gsolves for the internal temperature of a bubble as a function of both
position and time. It is important to know how many free radicals are
produced in a bubble over one cycle for a given set of parameters. One
can estimate this number from the temperature profiles the computer
program generates. One needs to know what fraction of the bubble's
volume reaches the critical temperature for free radical formation and
how long it remains at or above this temperature. A theoretical number

of free radicals could be obtained by numerically integrating over

.7y
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as 1%. When this experiment is complete one should be able to determine

the accuracy of the new theoretical model precisely.

Figures 16-18 show results for a frequency of 22.2 kHz and pressure
amplitudes of 0.095, 0.155, and 0.190 bar respectively. In each figure
the asterisks denote experimental points from reference [19]. The curve
giving the best fit to the experimental data in each figure is the new
theoretical model. From these figures one can conclude that the new
theory is more accurate than the old polytropic exponent theory for the

parameter range investigated.
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the acoustic force is balanced by an average buoyancy force given by

3

4
Fy = 3R pg<[R(t)/R_]%>, (92)

where g is the acceleration due to gravity. Equating these two forces

gives

IVPA}<[R(t)/Ro]3coswt> = pg<[R(t)/Ro]3>. (93)

Since pg 1is the hydrostatic pressure gradient, one can rearrange
equation (93) so that the right hand side is the levitation number as
defined above. Thus equation (93) becomes

<[R(t)/R°]3coswt> 0g

= =1 . (94)
<[R(t)/Ro]3> v, | €

The left hand side of equation (94) can easily be evaluated for a
numerical solution to equations modeling bubble oscillations. From
this equation one can compute levitation numbers for both the CE method
and the RPP method and compare the results to the experimental
levitation numbers obtained by Crum. The experimental points are
obtained in a rather straightforward manner and the technique is
discussed 1in detail in reference [19]. There may be as much as a 10%
error in obtaining the levitation numbers experimentally. However, it is
assumed that the experimental data is accurate enough to determine which
theoretical model best predicts the time evolution of an oscillating
bubble when pulsation amplitudes are not too large. A more automated

experimental procedure 1s being devised which could give results with

_____________
-
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C. Levitation numbers

The ratio of the hydrostatic pressure gradient on a bubble to the
acoustic pressure gradient has been referred to as the levitation number
Le by Crum and Prosperetti [19]. Before using this definition with the
new theory, let us first recall where the expression arises in the first
place.

The primary Bjerknes force or acoustic radiation pressure force on

a bubble is given by Crum [53] as

FA(E.’t) = —<V(t)VP(£,t)>, (89)

where V(t) is the time dependent volume of the bubble, P(r,t) 1is the
space and time dependent pressure ocutside the bubble, and the angle
brackets denote the time average of the quantity inside. If one uses a
levitation cell like the one used by Crum, then the pressure P(Ejt) in

the cell is of the form

P(xr,t) = P_ - P, (z)cosut, (90)

where PA(z) is the spatially dependent amplitude of the acoustic
standing wave in the cell. Substitution of equation (90) into (89)

gives the magnitude of the acoustic force as

4 3 3
F, = 3“R0|VPA|<[R(t)/Ro] coswt>, (91)

where Ro is the equilibrium radius of the bubble.

When the bubble remains in a fixed position in the levitation cell,
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reveals missing ultraharmonic resonance peaks 1in figure 13. For
example, Lauterborn's figure shows a 3/2 ultraharmonic, whereas figure
13 does not. 1In order to be sure that these peaks are not being skipped
by too large a step size in the frequency domain, another calculation
is made with twice as many points in the frequency domain than before.
This result is presented in figure 15 for a 10 micron bubble driven at
0.7 bar along with some partial curves at 0.8 and 0.9 bar. Points taken
from ultraharmonic peaks in Lauterborn's figure are denoted by
asterisks. Again the wultraharmonic resonances are missing from our
curve at 0.7 bar, but they begin to appear as the pressure is increased.
Qualitatively, the two theories give similiar results, but there are
significant quantitative differences which can be important in certain
applications as mentioned previously.

Although there are good indications that the new theory 1is more
accurate in some parameter domains, one should wait for future
experimental results before deciding which theory best predicts the

frequency response of the bubble in these high amplitude regions.
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To complete this thermodynamic look at an oscillating bubble, one
must examine the internal pressure of a bubble as a function of time.
Recall that it was previously assumed that the internal pressure 1is a
function of time only. It has been predicted that internal pressures of
hundreds of atmospheres may be attained during the violent collapse of a
bubble. It will be shown that under the proper conditions the new theory
predicts that internal pressures on the order of hundreds of atmospheres
are attained by bubbles with large pulsation amplitudes. Figures 25-27
were calculated under the same conditions as figures 22-24. In each
i case the pressure is normalized with respect to atmospheric pressure.
Note that figure 27 shows an 1internal pressure higher than 300
atmospheres. These high pressures last only a short time as do the high
temperatures discussed previously.

Finally, figure 28 1is presented with the radius, internal
pressure, and center temperature all on the same figure. The

equilibrium radius of the bubble is 50 microns, the driving pressure

amplitude 0.6 bar, and the driving frequency 0.4 times the Ilinear

resonance frequency. From this figure it is easy to see the phase

relationship between the radius, pressure, and temperature of the

bubble. The arrows on the figure indicate the positions of 1lowest
4 internal temperature during the two cycles shown. This figure supports

our earlier claim, that the minimum value of the gas temperature occurs

when the radius of the bubble is increasing between Ro and its maximum
q value.
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Chapter 4

A Systematic approach to chaotic bubble motion

In recent years, the numerical investigation of nonlinear dynamical
systems has revealed many exciting features. Perhaps the most exciting
discovery of all was period-doubling bifurcation as a universal route to
chaos [11]. Some other interesting discoveries are the coexistence of
attractors with complex basin structures and the strange attractors
which exhibit the property of sensitive dependence on initial
conditions. A thorough discussion of these and many other features of
nonlinear dynamical systems is found in the text by Guckenheimer and
Holmes [54].

In 1983 a number of researchers discovered another exciting
phenomenon associated with nonlinear dynamical systems [55-57]. These
researchers have shown that a variety of dynamical systems exhibit the
property of finite period doubling sequences merging with inversely
advancing ones to form a finite number of "bubbles" on some cross
section of the parameter space. A consequence of this merging of period
doubling sequences 1s localized regions of stable orbits and other
localized regions of chaotic motion [12].

Probably the most thoroughly studied dynamical system 1is the

Duffing equation [58]
i +aX + X + X} = bcos(wt) . (95)
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One outstanding feature of this equation is that it exhibits all of the
properties we have mentioned above. Parlitz and Lauterborn [59] give a
more global view of the Duffing equation by emphasizing the important
role of the nonlinear resonances, which cause many of the striking
features mentioned above.

One would like to have a global view of the new acoustic cavitation
equations, similar to the one given for the Duffing equation in
reference [59]. However, because of the complexity of the system, this
is very difficult. The many parameters that can be varied in the
acoustic cavitation equations make a global analysis virtually
impossible. One can, however, learn a great deal about the system by
using the techniques described above. Both the Rayleigh-Plesset
equation employing the polytropic approximation, RPP, and the new exact
formulation, CE, are examined in this fashon.

One particularly useful technique is that of bifurcation analysis
of the solutions. In general, one follows the norm of a trajectory ¢
( which is a solution of the equations in the phase space (¢,$) ) as it
changes with respect to changes in a control parameter u. For the
multi-parameter case, one holds all the parameters fixed except for the
one of current interest -~ in the case of interest this is the driving
pressure amplitude. One then constructs a bifurcation curve for that
parameter; that 1is, one plots the locus of points in the Poincare

section [60] verses the control parameter.

In simpler terms, this means one plots the value of the radius at
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times that are multiples of the period of the driving pressure. This
technique 1s used at each increment of the pressure amplitude to
complete the figure. If the bubble 1is oscillating with a period equal
to that of the driving pressure, one gets a single point for each value
of the pressure amplitude. If the period of the bubble's oscillations
is twice that of the driving pressure, two values of the radius are
obtained for each value of the pressure amplitude, and so on. This
type of graph is known as a "Feigenbaum tree".

In order to make a comparison between the two theories, one chooses
the same set of initial conditions or parameters. We choose a bubble
with an equilibrium radius of 50 microns and a driving frequency equal
to half of the linear resonance frequency of the bubble. Figure 29
shows the results for the RPP equation and figure 30 the results for the
CE equations. Since the damping is quite different for each model, the
range of driving pressures where interesting phenomena occur 1is
different as well.

The most striking difference between the two figures, however, 1is
that the RPP equation exhibits a period-doubling bifurcation route to
chaos, while the CE equations exhibit period bubbling and an
intermittent transition to chaos. An interesting feature of the RPP
Feigenbaum tree is the missing arms from the second bifurcation point.
The reason for the missing arms is conjectured to be due to a broken
symmetry in the mapping sequence at the second bifurcation poin- ([61].

From reference [12], one can conclude that varying the driving frequency

...........
..........
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toward a resonance peak would introduce more structure in the figures,
particularly in figure 30. One would expect to see period doubling in
the bubbles of figure 30, and perhaps even a region of chaos in the
bubble itself.

Unfortunately, the computer time required for a "Feigenbaum tree"
using the CE equations is over one week on a Digital PDP 11/73. This
time constraint has severely limited the scope of the present
investigation. As faster microcomputers become available, this type of
analysis is sure to become more and more popular.

Although global predictions cannot be made for either of the two
theories investigated, we have learned that the damping used in each
system determines, to a large degree, the characteristics of the
oscillations. Thus, one can compare an analysis of this type to
"Feigenbaum trees” obtained experimentally, to determine which model of
the damping is more accurate. An experiment of this type is planned,

using the technique described in section D of chapter 2.

...........

LR Yl Ja s Jaclh Jenl ik ol sendt Mo sl
L R I I e N

A an e 2 |




85

LA i b st Ennc Susichame Stk et Sad Sdey

L —_—

A

- \‘-' .r'..

vy

ST R TN TR TR INERY

ORI SR i saiy “alie “ali il Sl

.m.OHOu\m pue suoadtu omnom
*uorjenbs 44y ayi 103y 0913 unequadysg, ‘67 2an3Td

JdMNSSddd INIATHU

aov "1 gee "1 L82 "1 goc 1 gel '1 L90 "1 000 1
Y T T T ) Y | L T —1 DDm -D

Boetee g 0, o ;
e T . .-m * Neve s .—-u.“- ”.- ---

= . L “ . ~ . -u-- .~

3% =, . bl L] [ o

Y aann . 000 °1

. . . Lt e 2 -l ",
o H ' . " --u- " o Ill
T . L} - * - . -n ol-
-n .o * L -m-t L
P . u--- Sl o

SRR -Hoos 1 ;
el :
PO N . #
AT e S
o PR LY 4 g
o e St Hooo "2 g

X
[10vy 038081S

Y 1 . 1 e 1. e i ') ! d Dom .N




N AP AP S Ieh Al Al A el

T—
D N N

86

.m.OHOm\w pue suoidtu Omnom
‘suorienbs {) 3yl 103y 9913 wnequaldrad,, -Q¢ 2andt4

J4NSS3dd INIATHA

! coag T £96 "0 EEB O

=

006 0

oor "1 L90 T
' T — T T T ™ T

- e g " %N -« 8 t---o-u-.l-l-rulu
L]

-.\.o---” .. --M-nh\---u

aw R ) .y -Jm

00G "0

-10G0 "1

-00G "1

1000 ¢

00S% ¢

[10vd 0480415

B A
A teald ol ol atn e he tan o

AT ST e e
P PP Y R e AT
PP AP el 0, W AP A




A THEORETICAL INVESTIGATION OF ACOUSTIC CAVITATIONCU) 2/2

u ol

. AD-A158 858
- HISSISSIPPI UNIYV UNIVERSITY PHYSICAL RCOUSTICS RESEARCH
. LAB W COMMANDER ET AL. 15 JUL 85 4-85
UNCLASSIFIED N89014 84 C-08193 F/G 20/1




v 'l Y PSS

i

ETEER

“Im
—
== ==

S HEEF I,

Badaams o

NATIONAL BUREAU OF STANDARDS
MIGROGOPY AESOLUTION TEST CHART

m—
E———]
—
—
—

[ v _%- .w‘
L ] * .
X i v = |
+ ——— ““”Ill .
: = = = .A
.H. .m
..,Ar ] .~..4
ﬁ.. - 4
-... -\4
N ...,
-. . .\.L
e
b .} .
. 4
p

SR AR

. -I.-II




.........

..... - ALV, P L R - .

Chapter 5

Conclusions and topics for future study

The purpose of this study was to show that an exact formulation for
the internal pressure of a cavitating bubble leads to a more applicable
solution of an equation modeling acoustic cavitation. The strongest
evidence obtained to support this claim is the reasonably close
agreement between experimental levitation numbers and the ones obtained
numerically using the new theory. The exact formulation shows the
strong second harmonic resonance peak in the levitation number curves,
whereas the polytropic approximation shows very little resonance effect
at all.

One can conclude from this study, that for small pulsation
amplitudes and driving frequencies below one fourth of the resonance
frequency of a bubble, the polytropic approximation is sufficiently
accurate and should be used when computer time is a factor. Under other
conditions, however, the new formulation should be used unless the
pulsation amplitude is large. For large pulsation amplitudes one cannot
be so positive about the new theory. Some of the approximations are no
longer valid when the pulsation amplitude of the bubble approaches twice
the equilibrium radius. One must wait for new experimental results
before saying how accurate the new theory is in this region.

It has been observed that the polytropic approximation gives a
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value for the damping that is too large when the driving frequency 1is
near a harmonic resonance. There are a number of ways to modify the
damping term iIn equations using the polytropic apprﬁximatian to help
compensate for the overdamping at the resonance peaks. Some of these
methods may give results as accurate as the exact method. However, this
is not very pleasing to the theoretician interested in understanding the
physics of a cavitation bubble. Unfortunately, one must pay a high
price for this elegant theory in terms of the complexity of its
numerical solution. The exact formulation requires about an order of
magnitude more computer time than does the polytropic formulation with
an artificial damping term included.

The artificial damping techniques have some difficulties of their
own, however. There is no one corrective term of this type that works
well over a large range of equilibrium radii, driving frequencies, and
driving pressure amplitudes. This is a serious limitation when trying
to predict the global behavior of an acoustic cavitation theory.

One possible solution to this problem is to replace the polytropic
exponent and artificial‘damping terms with a single function for the
internal pressure. As stated previously, this function for the internal
pressure mst be dependent on the equilibrium radius, the driving
frequency, and the driving pressure amplitude. A study such as the one
here may be of great help in devising such a function. Figures have been

presented for the internal pressure at various equilibrium radii,

driving frequencies, and driving pressure amplitudes. These figures are
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very useful when trying to find the functional dependence of the
internal pressure on the parameters mentioned.

In several of the figures presented in the ptevious chapters, the
new theory was pressed to the limits of its applicability. One would
like to extend the applicabiblity of the exact formulation 1into the
region of 1large pulsation amplitudes. There are essentially two
problems which must be overcome in order to extend the theory to this
region.

First, the second order numerical integrator needs to be replaced
by the fourth order Adams-Moulton method. Also, one needs to find a
more accurate method than the Crank-Nicolson method used to solve for
the internal temperature. These higher order methods would greatly
reduce the numerical error wmade during the collapse phase of the
bubble's cycle when the pulsation amplitude is large.

The second problem encountered is that of inapplicability of the
equations for the internal pressure when the pulsation amplitude of the
bubble 1is too large. Recall that in deriving these equations, it was
assuﬁed in several places that the velocity of the bubble wall was small
compared to the speed of sound in the gas. However, this condition does
not hold when the pulsation amplitude of the bubble is very large.
Hence, one must retain some of the terms discarded in the earlier
derivation in order to maintain applicability in the 1large pulsation

amplitude region. This will in turn make the numerical integration more

complex and time consuming on the computer. Further investigations are
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needed to find the most useful model which takes into account all of the
difficulties mentioned above.

In previous chapters several experiments were déscribed that would
help to advance the theory of acoustic cavitation. The importance of
these experiments cannot be overemphasized. Experimental data at large
pulsation amplitudes that is sensitive to the damping is very important
to the theory.

Lauterborn has carried out several experiments in which he examines
the acoustic emissions of a bubble field and has been able to detect the
onset of different modes of oscillation as the driving pressure is
increased. The onset of these different modes corresponds to a
bifurcation point on a "Fiegenbaum tree". An experiment of this type
could be conducted with a single bubble in a levitation cell, such as
the one used by Crum. This would give an experimental "Feigenbaum tree"
which could be used to test the theories. In chapter 4 it was seen that
the bifurcation points were very sensitive to the damping, so this is an
appropriate test for the damping models.

The 1laser 1light scattering experiment described in chapter 2 1is
probably the most important experiment of all the ones mentioned. This
experiment could provide an exact radius verses time curve that would be
very useful in developing an appropriate model of the internal pressure
or damping.

Until the successful completion of gsome of the experiments

suggested, or perhaps some others not mentioned here, one can only
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speculate as to the applicability of the present theory to bubbles with
large pulsation amplitudes. One can, however, say that this exact
approach to the internal pressure of a cavitating Subble gives more
accurate results in its region of applicability than does the polytropic
approximation. It 1is also pleasing to the physicist to have a

theoretical model that agrees with experiments without resorting to

artificial viscosities or damping terms.
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APPENDIX

A. Computer program for the exact formulation

The following FORTRAN program was used to make calculations for the
compressible exact theory, which was denoted by CE. This program
outputs the radius, internal pressure, and center temperature as a
function of time. The modifications necessary to calculate the
levitation numbers, frequency response curves, temperature profiles, and
Feigenbaum tree are not shown. However, each of these modifications is
straightforward to implement in the computer program.

The input parameters necessary to run the program are REQ, AMP,
LAMBDA, NN, NTMSTP, NCYCLE, AND IPRINT, where
REQ is the equilibrium radius of the bubble in microns,
AMP 1s the driving pressure amplitude in atmospheres,
LAMBDA is the fraction of the resonance frequency at which the bubble is
driven,
NN is the number of nodes ( finite difference points ) in the bubble,
NTMSTP is the number of time steps in 1 period of the driving pressure,
NCYCLE is the number of cycles of the driving pressure integrated over,

IPRINT is the fraction of the points that are output ( 1/IPRINT ).
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PROGRAM CE
VERSION 1.0 MARCH 5, 1985

THIS PROGRAM USES A PREDICTOR-CORRECTOR METHOD TO SOLVE THE
NONLINEAR SET OF EQUATIONS FOR RADIAL BUBBLE OSCILLATIONS.

OOO0O00O0O0

khkkhkhkkkkkkdkhkkhkkhkhkkkhkkkhkhkkhkhkhkhkhkkkkhkhkhkkkhkhkkkkhkkhhkkkkhkkhkikhkkhhkkkhkhkk

DEFINITION OF CONSTANTS & VARIABLES

GAM = RATIO OF SPECIFIC HEATS - DIMENSIONLESS
RHOL = DENSITY OF LIQUID - GRAMS/CC

F = DRIVING FREQUENCY - HERTZ

REQ = EQUILIBRIUM RADIUS OF BUBBLE - CENTIMETERS
PINF = UNDISTURBED LIQUID PRESSURE - DYNES/CM/CM
SIGMA = SURFACE TENSION - DYNES/CM

AMU = LIQUID VISCOSITY - POISE

AMP = DRIVING PRESSURE AMPLITUDE IN ATMOSPHERES
EPS = DIMENSIONLESS PRESSURE AMPLITUDE AMP/PINF

KINF = THERMAL CONDUCTIVITY OF AIR @ EQUILBRIUM COND. =~
ERGS/(SEC*CM*DEG.KELVIN)
TINF = AMBIENT LIQUID TEMPERATURE - DEGREES KELVIN

PO = INTERNAL PRESSURE OF BUBBLE @ EQUIL. - DYNES/CM/CM
W = RADIAL DRIVING FREQUENCY - RADIANS/SEC

DO = THERMAL DIFFUSIVITY OF AIR @ EQUIL. - CM*CM/SEC
NN = NUMBER OF FINITE DIFFERENCE POINTS IN BUBBLE
NTMSTP= NUMBER OF DIMENSIONLESS TIME STEPS IN ONE PERIOD
R = DIMENSIONLESS RADIUS

RTL = R TILDA @ N+1 TIME STEP

RP1 = DIMENSIONLESS @ N+1 TIME STEP

RST = R STAR

U = DIMENSIONLESS VELOCITY (BUBBLE WALL)

UTL = U TILDA @ N+1 TIME STEP

UPR = DU/DT @ TIME STEP N

UP1 = DIMENSIONLESS VELOCITY @ N+1 TIME STEP

UST = U STAR
P DIMENSIONLESS INTERIOR PRESSURE
PTL = P TILDA @ N+1 TIME STEP

OO0 00000O0O00O00O000O0000O000O00000000000000000

PPR = DP/DT @ TIME STEP N

PTLPR = DPTL/DT @ N+1 TIME STEP

PST = P STAR

PSTPR = P STAR PRIME

PP1 = DIMENSIONLESS INTERIOR PRESSURE @ N+1 TIME STEP
T = DIMENSIONLESS TIME

K = DIMENSIONAL THERMAL CONDUCTIVITY OF AIR

VEL = VELOCITY OF SOUND IN LIQUID IN CM/SEC

B = DIMENSIONLESS THERMAL DIFFUSIVITY OF AIR
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20

40

400

OMO=DSQRT( OMO)

DO 20 K=1,20
THETA=R*DSQRT(2.*OMO/DIFF)

EX=0.0
IF(THETA.LT.10.0)EX=DEXP(-THETA)
ST=2.*DSIN(THETA)

CT=2.*DCOS(THETA)

APLUS=(1 .+EX*(ST-EX))/(1.+EX*(EX-CT))
AMINUS=(1.~EX*(ST+EX))/(1.+EX*(EX-CT))
T1=(THETA+THG]1 *AMINUS)*THE ~A
T2=THG1*(THETA*APLUS-2.)
DEN=T1#*T[+T2*T2
KAPPA=GAM*THETA*THETA*T1 /DEN
OMOLD=0MOQ

OMO=PRR2* (3 .*KAPPA+(3 .*KAPPA-1.)*W)
OMO=DSQRT( OMO)
IF(DABS(OMO/OMOLD-1.0).LT.1.D=4)GOTO 40
CONT INUE

GOTO 400

CONTINUE

AIMPHI=3 ,*GAM*T2*THETA*THETA/DEN
BETTH=.5*PIO*AIMPHI/(RHOL*OMO*R*R)
BETAC=.5*OMO*OMO*R/VEL
BETAV=2.*AMUL/( RHOL*R*R)
FO=0M0/6.283185307179586
THETA=R*DSQRT(2.*0OMO/DIFF)
BETA=BETTH+BETAV+BETAC

CONT INUE

RETURN

END

--------------
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DDR2=H*DDER

R=RI+.5*DR2

DR=DRI+.5*DDR2
DDER=DER(R,DR,TT)

DR3=H*DR

DDR3=H*DDER

R=RI+DR3

DR=DRI+DDR3

TT=T+H

DDER=DER(R,DR,TT)

DR4=H*DR

DDR4=H*DDER
RO=RI+(DR1+DR4+2.*(DR2+DR3))/6.
DRO=DRI+(DDR1+DDR4+2.*( DDR2+DDR3) ) /6.
RETURN

END

DOUBLE PRECISION FUNCTION DER(R,DR,T)
IMPLICIT REAL*8(A-H,0-Z)

REAL*8 KAPPA,LAMBDA
COMMON/SET1/AMP ,KAPPA, LAMBDA
COMMON/COST /PAR, AMTH,AMEFF,P1,PIPOL
COMMON/Q/W,PI0

COMMON/SET4 /THREEK , OMW

PIPOL = P INTERNAL POLYTROPIC
Pl = PIPOL - THERMAL DAMPING CONTRIBUTION

PIPOL=1./R**THREEK

PI=PIPOL-AMTH*DR/R
DER=PI-W/R-AMEFF*DR/R~OMW* (1 .~AMP*DSIN(T))
DER=( PAR*DER-1.5*DR*DR)/R

RETURN

END

SUBROUTINE RESNCE(R)

IMPLICIT REAL*8(A-H,0~Z)

REAL*8 KAPPA

COMMON/SET1/AMP,KAPPA, LAMBDA

COMMON/PARAMS /GAM,DIFF,PINF,RHOL,SIGMA,VEL,AMUL
COMMON/RES/F0,AIMPHI,BETTH,BETAV,BETAC,BETA
COMMON/Q/W,PIO

PIO=PINF+2.*SIGMA/R

THG1=3.*(GAM-1.)

PRR2=PINF/( RHOL*R*R)

W=2.*SIGMA/(R*PINF)

KAPPA=1.2
OMO=PRR2*( 3 .*KAPPA+( 3 .*KAPPA-1.)*W)
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20

30

35

38
36

40
200

H2=H/2.
EPS=1.D-7
EPSB=1.D-8

DO 40 K=1,32500

CALL RUNGE(RO,DRO,RA,DRA,T,H)
CONTINUE

CALL RUNGE(RO,DRO,RB,DRB,T,H2)
T=T+H2

CALL RUNGE(RB,DRB,RC,DRC,T,H2)
T=T+H2
IF(DABS(DRC).LT.EPSB)GOTO 30
ERR=DABS(DRA/DRC~1.)
IF(ERR.LT.EPS) GO TO 30
RA=RB

DRA=DRB

T=T~H

H=H2

H2=H/2.

GO TO 20

CONTINUE

RO=RC

DRO=DRC

DDER=DER(RO,DRO,T)
PRES=DSIN(T)

WRITE(1,38)RO,T
WRITE(2,38)PI,T
1F(T.GE.TMAX)GOTO 200
FORMAT(F12.6)
IF(ERR.GT.EPSB)GO TO 40

H2=H

H=2.*H2

CONTINUE

CONTINUE

RETURN

END

SUBROUTINE RUNGE(RI,DR1,R0O,DRO,T,H)
IMPLICIT REAL*8(A-H,0-2)
DDER=DER(RI,DRI,T)

DR1=H*DRI

DDR1=H*DDER

R=RI+.5*DRI

DR=DRI+.5%*DDRI

TT=T+H/2.

DDER=DER(R, DR, TT)

DR2=H*DR
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COMMON/PARAMS /GAM, DIFF,PINF,RHOL, SIGMA,VEL,AMUL
BETTHR=BETTH

AIMPHR=AIMPHI

BETACR=BETAC

RO=1.0

DRO=0.0

H=6.283185307179586D-2

OMW=1 .-W

OM0=6.283185307179586*F0
OM=LAMBDA*OMO

PAR=P10/(RHOL*( OM*R)*(OM*R))
AMVIS=4 . *AMUL*OM/PI0
THETA=R*DSQRT(2 .*OM/DIFF)

EX=0.0
IF(THETA.LT.10.0)EX=DEXP(~THETA)
ST=2.*DSIN(THETA)
CT=2.*DCOS(THETA)

APLUS=(1 .+EX*(ST-EX))/(1.+EX*(EX~CT))
AMINUS=(1 .~EX*(ST+EX))/(1 .+EX*(EX-CT))
T1=(THETA+3.*(GAM-1)*AMINUS)*THETA
T2=3.%(GAM-1.)*(THETA*APLUS-2.)
DEN=T1*T1+T2*T2

AIMPHN=3 ,*GAM*T2*THETA*THETA/DEN
KAPPA=GAM*THETA*THETA*T1 /DEN
THREEK=3 .0*KAPPA
BETACN= . 5*OM*OM*R/VEL
BETTHN=.5*PIO*AIMPHN/( RHOL*R*R*0OM)
BETTH=BETTHR

AIMPHI=AIMPHR

BETAC=BETACR

IF(OPTTH.EQ.1.0)GOTO 10

C
C NOW COMPUTE THE THERMAL DAMPING AT OM RATHER THAN OMO
c

AIMPHI=AIMPHN
BETTH=BETTHN
BETAC=BETACN

c

10 CONTINUE
AMAC=2 . *RHOL*OM*R*R*BETAC/P10
AMTH=AIMPHI

NEXT STATEMENT IS FOR NO THERMAL DAMPING
AMTH=0.0

OO0

AMEFF=AMVIS+AMAC
TMAX=6.283185307179586*NNNN
T=0.0D0
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PROGRAM RPP

IMPLICIT REAL*8(A-~H,0-Z)

REAL*8 KAPPA,LAMBDA,RDSK
COMMON/COST/PAR, AMTH, AMEFF,PI,PIPOL
COMMON/SET1/AMP ,KAPPA, LAMBDA
COMMON/SET2/NNNN
COMMON/SET3/WRK,NTM1,DT

Ty
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COMMON/PARAMS /GAM, DIFF,PINF,RHOL,SIGMA,VEL, AMUL

C OPTTH=0.0 GIVES NONRESONANCE VALUES:1.0 GIVES RESONANCE

c

55

OPTTH=G.0

GAM=1.4
DIFF=0.2
PINF=1.013D6
RHOL=1.0
AMUL=1.0D~-2
SIGMA=72.8
VEL=1.481D5

WRITE(5,55)

FORMAT(' INPUT RO, LAMBDA, PA, NO. OF CYCLES')

READ(S5,* )RDIM, LAMBDA, PA, NNNN

R=RDIM*1.0D~4
AMP=PA
PA=PA*) .0D6

CALL RESNCE(R)

WRITE(S,56)
FORMAT(1H )

CALL WORK(R,OPTTH)

STOP
END

SUBROUTINE WORK(R,OPTTH)

IMPLICIT REAL*8(A-H,0~Z)

REAL*8 KAPPA,LAMBDA

COMMON/SETS/DELAY, TR1

COMMON/SET2/NNNN
COMMON/SET1/AMP,KAPPA,LAMBDA

COMMON/SET4 /THREEK , OMW

COMMON/Q/W,PI0
COMMON/RES/FO0,AIMPHI,BETTH,BETAV,BETAC,BETA
COMMON/COST/PAR,AMTH,AMEFF,PI,PIPOL
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B. Computer program for the Rayleigh-Plesset polytropic equation

The following FORTRAN program was used to make calculations for the
Rayleigh-Plesset equation using the polytropic approximation. The
integration 1is carried out using a fourth order Runge-Kutta algorithm.
The output from this program is radius and internal pressure as a
function of time.

The input parameters necessary to run the program are RDIM,
LAMBDA, PA, NNNN, where,

RDIM is the equilibrium radius of the bubble in microns,

Lambda is the fraction of the resonance frequency at which the bubble is
driven,

PA is the driving pressure amplitude in atmospheres, and

NNNN is the number of cycles of the driving pressure amplitude

integrated over.




10

20

RETURN
END

TRIDIAGONAL SYSTEM SOLVER

SUBROUTINE TRIDG(VEC)

DIMENSION DII(SI),DIZ(SI),DIB(SI),RHS(SI),VEC(SI)
COMMON/SET2/DI1,DI2,DI3,RHS,NM1,N

DO 10 I=1,NM1
D12(1+1)=D12(I+1)—DI3(I)*DII(I)/D12(I)
RHS(I+1)=RHS(I+1)—RHS(I)*DII(I)/DIZ(I)
VEC(N)=RHS(N)/DI2(N)

DO 20 M=NM1l,1,-1
VEC(M)=(RHS(M)-DI3(M)*VEC(M+1))/DIZ(M)

RETURN

END

S W TR T W
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WRITE(1,96)R,T
WRITE(2,96)P,T
WRITE(3,96)1G6(1),T

96  FORMAT(F12.5)

1000 CONTINUE

1100 CONTINUE

C
c
STOP
END
c
c SUBROUTINE TO CALCULATE RESONANCE FREQUENCY FO
c

SUBROUTINE RESNCE(R,F0Q)

REAL KAPPA,LAMBDA

COMMON/SET1/GAM, PINF,RHOL, SIGMA,VEL,AMUL,KINF,TINF

PIO=PINF+2.*SIGMA/R

THG1=3 .*(GAM-1.)

DIFF=(GAM-1.0)*KINF*TINF/(GAM*P10)

DIFF=.2

PRR2=PINF/(RHOL*R*R)

W=2,.*SIGMA/(R*PINF)

KAPPA=1.2

OMO=PRR2*(3 .*KAPPA+(3 .*KAPPA-1.)*W)

OMO=SQRT(OMO)

DO 20 K=1,20

THETA=R*SQRT(2.*OMO/DIFF)

EX=0.0

IF(THETA.LT.10.0)EX=EXP(~THETA)

ST=2.*SIN(THETA)

CT=2.*COS(THETA)

APLUS=(1 .+EX*(ST-EX)) /(1 .+EX*(EX-CT))

AMINUS=(1 .-EX*(ST+EX))/(1 .+EX*(EX-CT))

T1=(THETA+THG1*AMINUS )*THETA

T2=THG1*(THETA*APLUS-2.)

DEN=T1*T14T2*T2

KAPPA=GAM*THETA*THETA*T1 /DEN

OMOLD=0MO

OMO=PRR2*(3 . *KAPPA+(3 . *KAPPA-1.)*W)

OMO=SQRT( OMO )

IF(ABS(OMO/OMOLD-1.0).LT.1.E-4)GOTO 40
20 CONTINUE

WRITE(5,30)

30 FORMAT(' NO CONVERGENCE IN SUBROUTINE RESNCE')
GOTO 400

40 CONTINUE
FO=0M0/6.2831853

400 CONTINUE
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RST2=RST*RST
DUM1=3.0*DTDY2*CHI*DST(1)/RST2
DI2(1)=1.0+DUM]
DI3(1)=-DUM1
RHS(1)=TAU(1)+.5*DT*(DTAUDT(1)+DST(1)*PSTPR)

DO 80 I=2,NN
TERM=(DTDY2*CHI/(2.0*RST2) )*(GMIG*(.5*(TAUST(I+1)-TAUST(I-1))
1+Y(I1)*TAUST(NN))/PST)
DI1(I-1)=-TERM~(DTDY2*CHI/(2.0*RST2))*DST(I)*YM(I)
DI2(I)=1.0+DTDY2*CHI*DST(I)/RST2
DI3(I)=TERM-DST(I)*YP(I)*(DTDY2*CHI/(2.0%RST2))
RHS(I)=TAU(I)+.5*DT*(DTAUDT(1)+DST(I)*PSTPR)

80 CONTINUE

CALL TRIDG(TAUP1)
c OTHER CORRECTOR EQUATIONS

MACH=UST/C
DRIVER=PFPQO*(1.0-EPS*SIN(T+DI+RST/DUME))
DUM1=1.0+(DT/(2.0*RST*(1.0-MACH)))*(1.5*%UST*(1.0-MACH/3.0)+CAPP*
1(1.0+MACH)*CAPM/RST)

DUM2=U+.5*DT*( UPR+CAPP*( (PST-DRIVER-CAPW/RST)*(1.0+MACH)+
1(1.0+0.0)*RST*PSTPR/C)/(RST*(1.0~-MACH)))

UP1=DUM2/DUM1

RP1=R+.5*DT*(U+UPI )
PPl=P+.5*DT*(PPR-3.0*GM1*CHI*TAUP1(NN)/(DY*RP1*RP1))
PP1=PP1/(1.0+1.5%*GAM*DT*UP1/RP1)

DO 85 I=1,NN
TGP1(I)=(SQRT(1.0+GM1G2A*TAUP1(1))~BETA)/ALPHA
DP1(I)=(ALPHA*TGP1(I)+BETA)*TGP1(1)/PP1

85 CONTINUE
C
C******************************************************************

C
C UPDATE AND OUTPUT AREA

c
T=TCC+FLOAT(J)*6.28318531/FLOAT(NTMSTP)
R=RP1
P=PP1
U=UP1

DO 90 I=1,NN
TG(I)=TGP1(I)
TAU(I)=TAUP1(I)
D(I)=DP1(I)
90 CONTINUE
IF(MOD(J, IPRINT).NE.0)GOTO 1000
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o RTL=R+DT*U

| RTL2=RTL*RTL

| DRIVER=PFPO*(1 .0-EPS*SIN(T+R/DUME))

1 UPR=~1.5%U*U*(1.-MACH/3.)+CAPP*( (P-DRIVER-( CAPW+CAPM*U)/R)
1*(1.0+MACH)+(1.0+0.0)*R*PPR/C)/(R*(1.0-MACH))

UTL=U+DT*UPR

® PTLPR=3.0* (GM1*CHI*(~TAUTL(NN) )/RDY-GAM*PTL*UTL)/RTL

START OF FIRST CORRECTOR SECTION

TRI-DIAGONAL SOLUTION FOR TAUST = TAU STAR @ N+1 STEP

aoOoOOooOn

® DUM1=3.0*DTDY2*CHI*DTL(1)/RTL2
DI2(1)=1.0+DUM1
DI3(1)=-DUMI
RHS(1)=TAU(1)+DT*(DTAUDT(1)+DTL(1)*PTLPR)/2.0

DO 70 I=2,NN

< TERM=( DTDY2*CHI/(2.0*RTL2))*(GM1G*( .5*(TAUTL(I+1)-TAUTL(I-1))
1+Y(I)*TAUTL(NN))/PTL)
DI1(I-1)=-TERM~(DTDY2*CHI/(2.0*RTL2))*DTL(I)*YM(1)
DI2(I)=1.0+DTDY2*CHI*DTL(1)/RTL2
DI3(I)=TERM-DTL(I)*YP(I)*(DTDY2*CHI/(2.0*RTL2))
RHS( I)=TAU(I)+.5*DT*(DTAUDT(I)+DTL(I)*PTLPR)

® 70 CONTINUE

CALL TRIDG(TAUST)

OTHER CORRECTOR EQUATIONS

OO0

¢ MACH=UTL/C

DUM1=1.0+(DT/(2.0*RTL*(1.0-MACH)))*(1.5*UTL*(1.0-MACH/3.0)+CAPP*

1(1.0+MACH)*CAPM/RTL)

DRIVER=PFPO*(1.0~EPS*SIN(T+DT+RTL/DUME))

DUM2=U+ . S*DT* (UPR+CAPP* ( (PTL-DRIVER-CAPW/RTL)*(1.0+MACH)+

1(1.0+0.0)*RTL*PTLPR/C)/(R*(1.0-MACH)))

LY UST=DUM2 /DUM1

RST=R+.5*DT*(U+UST)

PST=P+.5*DT*(PPR-3.0*GMl1 *CHI*TAUST(NN)/(DY*RST*RST) )

PST=PST/(1.0+1.5*GAM*DT*UST/RST)

PSTPR=3.0*(GM1 *CHI*(~TAUST(NN))/(RST*DY)-GAM*PST*UST)/RST

DO 75 I=1,NN

< TGST(1)=(SQRT(1.0+GM1G2A*TAUST(I))-BETA)/ALPHA
DST(I)=(ALPHA*TGST(1)+BETA)*TGST(1)/PST

75 CONTINUE

SECOND CORRECTOR EQUATIONS START HERE

aaaaon

TRI-DIAGONAL SOLUTION FOR TAUP1 = NEW VALUE OF TAU @ N+1 STEP
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® Y(II)=Y(II-1)+DY
YP(1I)=1.0+DY/Y(II)
YM(I1)=1.0-DY/Y(II)
TG(II)=1.0

TAU(II)=0.0
H‘ 50 CONTINUE
C
C*******************************************************************
c
C USEFUL EXPREESSIONS TO SAVE COMPUTATIONAIL TIME
C
® DUME=W*C
DY2=DY*DY
DY22=DY2%*2.0
DTDY2=DT/DY2
c
C****************************************************************:\-
< C
C WORK AREA
C
DO 1100 II=1,NCYCLE
TCC=(II~1)*6.283185307
TYPE *,11
® DO 1000 J=1,NTMSTP
c
C START OF PREDICTOR ROUTINE
c
R2=R*R
RDY=R*DY
¢ R2DY2=R2*DY2
PPR=-3.0%(GM1*CHI*TAU(NN) /RDY+GAM*P*)/R
PTL=P+DT*PPR
DTAUDT(1)=D(1)*(6.0*CHI*(TAU(2)-TAU(1))/R2DY2+PPR)
TAUTL(1)=TAU(1)+DT*DTAUDT(1)
TGTL(1)=(SQRT(1.0+GM1G2A*TAUTL(1) )-BETA)/ALPHA
¢ DTL(1)=( ALPHA*TGTL(1 )+BETA)*TGTL(1)/PTL

DO 60 I1=2,NN
DTAUDT(I)=D(I)*( (CHI/R2DY2)*(YP(I)*TAU(I+]1)-2.0*TAU(I)+
1YM(I)*TAU(I-1))+PPR)=-(GMIG*CHI/(R2*P))*((TAU(I+1)-TAU(I-1))/2.0
2+Y(I)*TAU(NN) ) *(TAU(I+1)-TAU(I-1))/DY22
< TAUTL( I)=TAU(I)+DT*DTAUDT(I)
TGTL(I)=(SQRT(1.0+GM1G2A*TAUTL(1))~BETA)/ALPHA
DTL(I)=(ALPHA*TGTL(1)+BETA)*TGTL(I)/PTL
60  CONTINUE

C
c REST OF PREDICTOR CALCULATIONS

¢ C

MACH=U/C

..........
..........




c CALCULATION OF THE RESONANCE FREQUENCY FQ

CALL RESNCE(REQ,F0)
c DERIVED CONSTANTS

F=FO*LAMBDA
EPS=AMP/PINF
DT=6.2831853/FLOAT(NTMSTP)
DELAY=6.2831853*(NCYCLE-2)
Py DY=1.0/FLOAT(NN)
NP1=NN+1
NM1=NN-1
PO=PINF+2.0*SIGMA/REQ
PFPO=PINF/PO
W=6.2831853*F
¢ C=VEL/(W*REQ)
GM1=GAM-1.0
GM1G=GM1 /GAM
DO=GM1G*KINF*TINF/PO
CHI~=DO/(W*REQ*REQ)
CAPP=P0/( RHOL*W*W*REQ*REQ)
(- CAPW=2.0*SIGMA/(REQ*PO)
CAPM=4 . 0*AMU*W/PO
ALPHA=M*TINF/KINF
BETA=B/KINF
GM1G2A=2 .0*GM1G*ALPHA

C
° C****************************************************************
C
C INITIAL CONDITIONS
C
R=1 .0
P=1.0
¢ T=0.0
U=0.0
D(1)=1.0
TG(1)=1.0
TG(NP1)=1.0
. TAU(1)=0.0
¢ TAU(NP1)=0.0
DTAUDT(NP1)=0.0
Y(1)=0.0
Y(NP1)=1.0
C NOTE- YP & YM @ 1 ARE NOT REQUIRED IN COMPUTATIONS.
DO 50 II=2,NN
D(1I)=1.0
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DST
DTL
DP1
TG
TGTL
TGST
TGP1
TAU
TAUTL
TAUST

D STAR

D TILDA

D ARRAY AT NEW TIME STEP

DIMENSIONLESS INTERIOR GAS TEMPERATURE ARRAY
TG TILDA

TG STAR

TG @ N+1 TIME STEP

DIMENSIONLESS INTERIOR GAS TEMPERATURE ARRAY
TAU TILDA

TAU STAR
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REAL KINF,M,K,LAMBDA,MACH
DIMENSION TGTL(51),TGST(51)
DIMENSION DI1(51),DI2(51),DI3(51),RHS(51),DP1(51)
DIMENSION D(51),DST(51),DTL(51),Y(51),YM(51),YP(51),DTAUDT(51)
DIMENSION TG(51),TGP1(51),TAU(S51),TAUTL(S51),TAUST(51),TAUP1(51)
COMMON/SET1 /GAM,PINF,RHOL,SIGMA,VEL,AMU,KINF,TINF
COMMON/SET2/DI11,DI2,DI3,RHS,NML,NN
c
C******************************************************************
c
P c INPUT FROM TERMINAL
C
WRITE(S5,10)
10 FORMAT(' INPUT RADIUS IN MICRONS, PA, AND LAMBDA')
READ(5,*)REQ,AMP, LAMBDA
WRITE(5,20)
@ 20 FORMAT(' INPUT NN, NTMSTP, NCYCLE, AND IPRINT')
READ(5 ,* )NN, NTMSTP, NCYCLE , IPRINT
REQ=REQ*1 .0E-4
AMP=AMP*1.013E6
c
C*****************************************************************
¢ c
c CONSTANTS
C
M=5.528
B=1165.0
GAM=1.4
( RHOL=0.998
PINF=1.013E6
SIGMA=72.8

AMU=0.01
TINF=293.15
KINF=TINF*M+B
¢ VEL=1.481E5
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